数据挖掘学习平台

本文介绍了一系列数据挖掘工具和技术,包括面向程序员的数据挖掘指南、数据挖掘十大算法讲解等资源,并列举了如Numpy、Scipy、Pandas等Python库在数据处理中的应用,还提到了多种数据挖掘软件工具,如Xgboost、mxnet、TensorFlow等。
摘要由CSDN通过智能技术生成
面向程序员的数据挖掘指南:https://legacy.gitbook.com/book/yourtion/dataminingguide/discussions
数据挖掘十大算法讲解:https://wizardforcel.gitbooks.io/dm-algo-top10/content/svm.html
算法总结:https://blog.csdn.net/liyingkun1237/article/details/44101837

光年关键词提取工具:提取出这些网页或文章内容中出现的关键词词性,权重和词频,整合整个网站内容。

rapidminer :是世界领先的数据挖掘解决方案

文本挖掘的工具:IBM DB2 intelligent MinerSAS Text Miner、SPSS Text Mining

Python:(P:parameter参数M:method方法C:variable变量V:class类F:function函数)

  1. Numpy:N维数组,矢量运算,高效的Index 不需要循环
  2. Acipy:依赖于Numpy,提供线性代数:傅里叶变换:图像处理算法
  3. Pandas:依赖于Numpy,提供多种高级数据结构,强大索引
  4. Matplotlib:python2D绘图,Mplot3D绘制精美3D图

数据挖掘软件工具:
[Xgboost](https://github.com/dmlc/xgboost)
[mxnet](https://github.com/dmlc/mxnet)
[tenserflow](https://github.com/tensorflow/tensorflow)
[WEKA](http://www.cs.waikato.ac.nz/ml/weka/) 
[Apache Mahout](https://mahout.apache.org/)
[Spark MLlib](http://spark.apache.org/docs/latest/mllib-guide.html) 

转载于:https://www.cnblogs.com/lgx-fighting/p/9424926.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值