Description
作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天。旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得的闲暇。
很幸运地,奶牛们找到了一张详细的城市地图,上面标注了城市中所有L(2 <= L <= 1000)座标志性建筑物(建筑物按1..L顺次编号),以及连接这些建筑物的P(2 <= P <= 5000)条道路。
按照计划,那天早上Farmer John会开车将奶牛们送到某个她们指定的建筑物旁边,等奶牛们完成她们的整个旅行并回到出发点后,将她们接回农场。
由于大城市中总是寸土寸金,所有的道路都很窄,政府不得不把它们都设定为通行方向固定的单行道。
尽管参观那些标志性建筑物的确很有意思,但如果你认为奶牛们同样享受穿行于大城市的车流中的话,你就大错特错了。与参观景点相反,奶牛们把走路定义为无趣且令她们厌烦的活动。
对于编号为i的标志性建筑物,奶牛们清楚地知道参观它能给自己带来的乐趣值F_i (1 <= F_i <= 1000)。相对于奶牛们在走路上花的时间,她们参观建筑物的耗时可以忽略不计。
奶牛们同样仔细地研究过城市中的道路。她们知道第i条道路两端的建筑物 L1_i和L2_i(道路方向为L1_i -> L2_i),以及她们从道路的一头走到另一头所需要的时间T_i(1 <= T_i <= 1000)。
为了最好地享受她们的休息日,奶牛们希望她们在一整天中平均每单位时间内获得的乐趣值最大。
当然咯,奶牛们不会愿意把同一个建筑物参观两遍,也就是说,虽然她们可以两次经过同一个建筑物,但她们的乐趣值只会增加一次。
顺便说一句,为了让奶牛们得到一些锻炼,Farmer John要求奶牛们参观至少2个建筑物。 请你写个程序,帮奶牛们计算一下她们能得到的最大平均乐趣值。
Input
* 第1行: 2个用空格隔开的整数:L 和 P
* 第2..L+1行: 第i+1行仅有1个整数:F_i * 第L+2..L+P+1行: 第L+i+1行用3个用空格隔开的整数:L1_i,L2_i以及T_i, 描述了第i条道路。
Output
* 第1行: 输出1个实数,保留到小数点后2位(直接输出,不要做任何特殊的取 整操作),表示如果奶牛按题目中描述的一系列规则来安排她们的旅 行的话,她们能获得的最大平均乐趣值
Sample Input
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
为60,为此她们得花费10单位的时间在走路上。于是她们在这次旅行中的平均乐
趣值为6。如果她们走2 -> 3 -> 5 -> 2的路线,就只能得到30/6 = 5的平均乐
趣值。并且,任何去参观建筑物4的旅行路线的平均乐趣值都没有超过4。
那么题目要求(∑(ci*xi))/(∑(di*xi))的最大值 xi∈{0,1}
我们一样的进行一波转换
z=(∑(ci*xi))-r'*(∑(di*xi)),其中z是左边这个式子的最大值
由于di为正数,xi为非负数,所以
r'>r 时 z(r')<0
r'=r 时 z(r')=0
r'<r 时 z(r')>0
然后二分求答案
不过因为环的缘故 我们可以利用spfa(其实函数名叫dfs)的方法求负环
当然这里求的是负环 但是其实如果存在负环其实是z(r‘)大于0
这是代码具体实现的问题辣
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int M=1e3+7; int read(){ int ans=0,f=1,c=getchar(); while(c<'0'||c>'9'){if(c=='-') f=-1; c=getchar();} while(c>='0'&&c<='9'){ans=ans*10+(c-'0'); c=getchar();} return ans*f; } bool f; int n,m,v[M]; int first[M],cnt; struct node{int to,next,w; double h;}e[10*M]; void ins(int a,int b,int w){e[++cnt]=(node){b,first[a],w,0}; first[a]=cnt;} int vis[M]; double d[M]; void dfs(int x){ vis[x]=1; for(int i=first[x];i;i=e[i].next){ int now=e[i].to; if(d[now]>d[x]+e[i].h){ if(vis[now]){f=true; return ;} d[now]=d[x]+e[i].h; dfs(now); } } vis[x]=0; } bool check(double k){ for(int i=1;i<=cnt;i++) e[i].h=k*e[i].w-v[e[i].to]; for(int i=1;i<=n;i++) d[i]=vis[i]=0; f=false; for(int i=1;i<=n;i++){dfs(i); if(f) return 1;} return 0; } int main() { int x,y,w; n=read(); m=read(); for(int i=1;i<=n;i++) v[i]=read(); for(int i=1;i<=m;i++) x=read(),y=read(),w=read(),ins(x,y,w); double l=0.0,r=10000; while(r-l>1e-3){ double mid=(l+r)/2; if(check(mid)) l=mid; else r=mid; }printf("%.2f\n",l); return 0; }