抛物线习题

一、常用技巧

  • 抛物线设点技巧,

如抛物线\(y^2=4x\)上任一点可以设为\((x,y)\),但不如设为\((4t^2,4t)\),运算简单。具体见例题13。

  • 抛物线的焦点弦长公式\(|AB|=\cfrac{2p}{sin^2\alpha}\)的推导:

思路1:代数方法,联立方程组,

992978-20171106200949216-649635271.png

当直线的斜率不存在时,即直线的倾斜角\(\theta=90^{\circ}\)时,\(x_1=x_2=\cfrac{p}{2}\)\(y_1=p\)\(y_2=-p\)

\(|AB|=|y_1-y_2|=2p=\cfrac{2p}{sin^290^{\circ}}=\cfrac{2p}{sin^2\alpha}\)

当直线的斜率存在时,即\(k=tan\theta\),焦点弦方程是\(y=k(x-\cfrac{p}{2})\),代入抛物线方程得到\(k^2x^2-(k^2p+2p)x+\cfrac{k^2p^2}{4}=0\)

利用韦达定理可知\(x_1+x_2=\cfrac{k^2p+2p}{k^2}\),由抛物线的定义

\(|AB|=|AF|+|BF|=x_1+x_2+p=\cfrac{k^2p+2p}{k^2}+p=\cfrac{2p(k^2+1)}{k^2}\)

\(=2p\times\cfrac{tan^2\theta+1}{tan^2\theta}=2p\times\cfrac{sin^2\theta+cos^2\theta}{sin^2\theta}=\cfrac{2p}{sin^2\theta}\)

思路2:几何方法,利用三角函数。

992978-20190425120614980-344565194.jpg

\(A(x_1,y_1)\)\(B(x_2,y_2)\),则由抛物线的定义可知,\(|AB|=x_1+x_2+p\)

\(|AF|=x_1+\cfrac{p}{2}\)\(|CF|=x_1-\cfrac{p}{2}\),又\(|CF|=|AF|cos\theta\),则可知

\(cos\theta(x_1+\cfrac{p}{2})=x_1-\cfrac{p}{2}\),解得\(x_1=\cfrac{1+cos\theta}{1-cos\theta}\cdot \cfrac{p}{2}\),同理求得\(x_2=\cfrac{1-cos\theta}{1+cos\theta}\cdot \cfrac{p}{2}\)

将其代入\(|AB|=x_1+x_2+p\),则\(|AB|=\cfrac{p}{2}(\cfrac{1-cos\theta}{1+cos\theta}+\cfrac{1+cos\theta}{1-cos\theta})+p\),整理得到\(|AB|=\cfrac{2p}{sin^2\theta}\)

记忆方法总结

  • 焦点弦三角形的面积的最小值是\(AB\)为通经时;

如下图所示,抛物线\(y^2=2px\),焦点\(F(1,0)\),过点\(F\)的直线\(AB\)和抛物线交于点\(A\)\(B\),设点\(A(x_1,y_1)\)\(B(x_2,y_2)\),则可知\(y_1y_2=-p^2\)

992978-20190418130156096-1769817881.jpg

\(S_{\triangle OAB}=\cfrac{1}{2}\times |OF|\times |y_1|+\cfrac{1}{2}\times |OF|\times |y_2|\)

\(=\cfrac{1}{2}\times |OF|\times (|y_1|+|y_2|)\ge \cfrac{1}{2}\times \cfrac{p}{2}\times 2\sqrt{|y_1y_2|}=\cfrac{p}{2}\cdot p=\cfrac{p^2}{2}\)

当且仅当\(|y_1|=|y_2|\)时取到等号,即焦点弦三角形的面积的最小值是\(AB\)为通经时,其值为\(\cfrac{p^2}{2}\)

给出方式

  • 抛物线\(y^2=2px(p>0)\)经过点\((2,4)\),即\(p=4\)$;

  • 抛物线\(y^2=2px(p>0)\)的焦点到准线的距离为\(4\),即\(p=4\)$;

二、抛物线性质

如下图所示,为抛物线\(y^2=2px\)的图像,过焦点\(F(\cfrac{p}{2},0)\)的直线\(AB\)与抛物线相交于\(A(x_1,y_1)\),且\(\angle xFA=\alpha\),则有以下性质:

\(x_1\cdot x_2=\cfrac{p^2}{4}\)\(y_1\cdot y_2=-p^2\)

\(|AB|=x_1+x_2+p=\cfrac{2p}{sin^2\alpha}\)

\(S_{\triangle ABC}=\cfrac{p^2}{2sin\alpha}\)

\(\cfrac{1}{|AF|}+\cfrac{1}{|BF|}\)为定值;

\(AB\)为焦点弦,当\(AB\perp x\)轴时,\(AB\)为通径;此时\(AB=2p\)

三、典例剖析

例1已知点\(P(-3,2)\)在抛物线\(C:y^2=2px(p>0)\)的准线上,过点P的直线与抛物线C相切于A,B两点,则直线AB的斜率为多少?

分析:由题目先得到抛物线方程\(y^2=12x\),对此式两边同时针对\(x\)求导,

992978-20171106194100653-1145979807.png

得到\(2y\cdot y'=12\),即\(y'=\cfrac{6}{y}\)

故经过抛物线上任意一点切线的斜率\(k=y'=\cfrac{6}{y}\)

则以点\(A(x_1,y_1)\),\(B(x_2,y_2)\)为切点的切线方程分别为

\(y-y_1=\cfrac{6}{y_1}(x-x_1)\)\(y-y_2=\cfrac{6}{y_2}(x-x_2)\)

将点\(P(-3,2)\)坐标代入以上两个式子,

得到\(2-y_1=\cfrac{6}{y_1}(-2-x_1)\)\(2-y_2=\cfrac{6}{y_2}(-3-x_2)\)

又因为\(y_1^2=12x_1\)\(y_2^2=12x_2\)

解得\(y_1=3x_1-9\)\(y_2=3x_2-9\)

即直线AB的方程为\(y=3x-9\),故所求斜率为3.

课件地址

例2设抛物线\(C:y^2=3x\)的焦点,过F且倾斜角为\(30^{\circ}\)的直线交C于A,B两点,则\(|AB|\)等于()

$A.\cfrac{\sqrt{30}}{3}$ $B.6$ $C.12$ $D.7\sqrt{3}$

【法1】:常规方法,利用两点间距离公式,由于\(2p=3\),则\(\cfrac{p}{2}=\cfrac{3}{4}\),故焦点\(F(\cfrac{3}{4},0)\),又斜率为\(k=\cfrac{\sqrt{3}}{3}\)

则直线\(AB\)的方程为\(y=\cfrac{\sqrt{3}}{3}(x-\cfrac{3}{4})\)

联立直线\(AB\)和抛物线方程,得到\(\left\{\begin{array}{l}{y^2=3x}\\{y=\cfrac{\sqrt{3}}{3}(x-\cfrac{3}{4})}\end{array}\right.\)

992978-20171106194108216-1343612812.png

\(y\)得到\(16x^2-24\times7x+9=0\),设点\(A(x_1,y_1)\),点\(B(x_2,y_2)\)

\(x_1+x_2=\cfrac{24\times7}{16}=\cfrac{21}{2}\)\(x_1x_2=\cfrac{9}{16}\)

\(|AB|=\sqrt{1+k^2}\cdot |x_1-x_2|\)

\(=\sqrt{1+k^2}\cdot\sqrt{(x_1+x_2)^2-4x_1x_2}=12\)

【法2】:利用直线\(AB\)的参数方程的参数的几何意义,

直线\(AB\)的参数方程为\(\begin{cases}x=\cfrac{3}{4}+\cfrac{\sqrt{3}}{2}t\\y=0+\cfrac{1}{2}t\end{cases}(t为参数)\),将其代入\(y^2=3x\)中,

整理得到\(t^2-6\sqrt{3}t-9=0\),设\(A\)\(B\)对应的参数分别为\(t_1\)\(t_2\)

\(\Delta>0\),且有\(t_1+t_2=6\sqrt{3}\)\(t_1t_2=-9\)

\(|AB|=|t_1-t_2|=\sqrt{(t_1+t_2)^2-4t_1t_2}=\sqrt{36\times3-4\times(-9)}=12\)

【法3】:利用抛物线的定义可知,\(|AB|=|AF|+|BF|=|AN|+|BO|=x_1+\cfrac{p}{2}+x_2+\cfrac{p}{2}=x_1+x_2+p\)

992978-20171106194108216-1343612812.png

故由法1中,得到\(x_1+x_2=\cfrac{24\times7}{16}=\cfrac{21}{2}\)\(p=\cfrac{3}{2}\),即\(|AB|=x_1+x_2+p=12\)

法4:利用抛物线的焦点弦长公式:\(|AB|=\cfrac{2p}{sin^2\alpha}\)

\(|AB|=\cfrac{2\times \cfrac{3}{2}}{(\cfrac{1}{2})^2}=12\)

例3【衡水金卷,直线过定点类型,较难】
如图所示,已知点\(A(-1,0)\)是抛物线的准线与\(x\)轴的交点,过点\(A\)的直线与抛物线交于点\(M,N\)两点,过点\(M\)的直线交抛物线于另一个点\(Q\),且直线\(MQ\)过点\(B(1,-1)\).

992978-20171103160715060-996574022.png

(1).求抛物线的方程。

分析:由题目图形可知,\(\cfrac{p}{2}=1\),则\(p=2\),故顶点在坐标原点,开口向右的抛物线的方程为\(y^2=2px\),即\(y^2=4x\)

(2).求证:直线\(QN\)过定点。

分析:如果直线过定点\((m,n)\),则直线的表达式必然应该能化为:\(y-n=k(x-m)\)类型。

设点\(M(4t^2,4t)\),点\(N(4t_1^2,4t_1)\),点\(M(4t_2^2,4t_2)\),则由题目易知直线\(MN\)的斜率存在,

\(k_{MN}=\cfrac{4t-4t_1}{4t^2-4t_1^2}=\cfrac{1}{t+t_1}\),从而直线\(MN\)的方程是\(y=\cfrac{1}{t+t_1}(x-4t^2)+4t\),即\(x-(t+t_1)y+4tt_1=0\)

同理可知,直线\(MQ\)的方程\(x-(t+t_2)y+4tt_2=0\),直线\(NQ\)的方程\(x-(t_1+t_2)y+4t_1t_2=0\)

又点\(A\)在直线\(MN\)上,从而有\(4tt_1=1\),即\(t=\cfrac{1}{4t_1}\);点\(B\)在直线\(MQ\)上,

从而有\(1+(t+t_2)+4tt_2=0\),即\(1+(\cfrac{1}{4t_1}+t_2)+4\times \cfrac{1}{4t_1}t_2=0\)

化简得到\(4t_1t_2=-4(t_1+t_2)-1\)

代入\(NQ\)的方程,得到\(x-(t_1+t_2)y-4(t_1+t_2)-1=0\)

\(y+4=\cfrac{1}{t_1+t_2}(x-1)\),故直线\(NQ\)经过定点\((1,-4)\)

  • 抛物线\(y^2=4x\)上的任意点的坐标的设法一般是\((x,y)\),本题采用\((4t^2,4t)\),是抛物线的参数方程的一种。

  • 注意直线过定点的证明思路。

例5【2019届宝鸡市高三理科数学质检Ⅰ第8题】平面直角坐标系\(xoy\)中,动点\(P\)与圆\((x-2)^2+y^2=1\)上的点的最短距离与其到直线\(x=-1\)的距离相等,则点\(P\)的轨迹方程为【】

$A.y^2=8x$ $B.x^2=8y$ $C.y^2=4x$ $D.x^2=4y$

分析:由题意可知,\(|PQ|=|PD|\),但是用这个不好建立轨迹方程,或者不能有效的和抛物线的定义建立联系,

故等价转化为\(|PA|=|PB|\),且其模型为\(y^2=2px\)

这样就可以理解为平面内一个动点\(P\)到一个定点\(A\)的距离等于其到定直线\(x=-2\)的距离。

由抛物线的定义可知,\(-\cfrac{p}{2}=-2\),即\(p=4\),故\(y^2=2\times 4x=8x\),故选\(A\)

  • 注意:抛物线的定义是高考考查时的高频考点。

例6已知抛物线\(y^2=2x\)的焦点为\(F\),准线为\(l\),且\(l\)\(x\)轴交于点\(E\)\(A\)是抛物线上的一点,作\(AB\perp l\),垂直为\(B\)\(|AF|=\cfrac{17}{2}\),则四边形\(ABEF\)的面积等于【】

$A.19$ $B.38$ $C.18$ $D.36$

例7【2018高考新课标Ⅲ卷第16题】已知点\(M(-1,1)\)和抛物线\(C:y^2=4x\),过\(C\)的焦点且斜率为\(k\)的直线与\(C\)交于\(A\)\(B\)两点,若\(\angle AMB=90^{\circ}\),则\(k\)=_________。

法1:点差法,做出如下示意图,连结\(MH\)\(H\)为焦点弦\(AB\)的中点,

由于\(\triangle AMB\)为直角三角形,\(H\)\(AB\)的中点,则\(MH=\cfrac{1}{2}AB\)

又由于\(AB=AF+BF=AP+BQ\),则\(MH=\cfrac{1}{2}AB=\cfrac{1}{2}(AP+BQ)\)

\(MH\)为直角梯形的中位线,则\(MH//x\)轴,

\(A(x_1,y_1)\)\(B(x_2,y_2)\),则有\(y_1^2=4x_1\) ①,\(y_2^2=4x_2\) ②,

①-②得到,\(y_1^2-y_2^2=4(x_1-x_2)\),即\((y_1+y_2)(y_1-y_2)=4(x_1-x_2)\)

则有\(\cfrac{y_1-y_2}{x_1-x_2}=\cfrac{4}{y_1+y_2}\),即\(k=\cfrac{4}{y_1+y_2}\)

又由于\(MH//x\)轴,\(M(-1,1)\),则\(H\)点的纵坐标为1,即\(\cfrac{y_1+y_2}{2}=1\),则\(y_1+y_2=2\),代入上式,

得到\(k=\cfrac{4}{y_1+y_2}=2\).

法2:向量法,设直线\(AB:y=k(x-1)\),由于点\(A,B\)都在抛物线上,故设\(A(4t_1^2,4t_1)\)\(B(4t_2^2,4t_2)\)

联立直线和抛物线,得到\(\left\{\begin{array}{l}{y=k(x-1)}\\{y^2=4x}\end{array}\right.\),消\(x\)得到,

\(y^2-\cfrac{4}{k}y-4=0\),则由韦达定理可知,\(4t_1+4t_2=\cfrac{4}{k}\)\(4t_1\cdot 4t_2=-4\)

\(t_1+t_2=\cfrac{1}{k}\)\(t_1\cdot t_2=-\cfrac{1}{4}\)

\(\overrightarrow{MA}=(4t_1^2+1,4t_1-1)\)\(\overrightarrow{MB}=(4t_2^2+1,4t_2-1)\)\(\angle AMB=90^{\circ}\)

\(\overrightarrow{MA}\cdot \overrightarrow{MB}=0\),即\((4t_1^2+1)(4t_2^2+1)+(4t_1-1)(4t_2-1)=0\)

打开整理得到,\(16(t_1t_2)^2+4(t_1^2+t_2^2)+1+16t_1t_2-4(t_1+t_2)+1=0\)

代入整理得到,\(\cfrac{4}{k^2}-\cfrac{4}{k}+1=0\),即\((\cfrac{2}{k}-1)^2=0\),解得\(k=2\)

例8已知抛物线\(C:y^2=4x\)的焦点为\(F\),过点\(M(4,0)\)的直线与抛物线\(C\)交于\(A\)\(B\)两点,则\(\triangle ABF\)的面积的最小值为【】

$A.8$ $B.12$ $C.16$ $D.24$

法1:做出如下的示意图,设直线\(AB\)的斜率为\(k\),不妨只考虑\(k>0\),则\(AB:y=k(x-4)\),即\(kx-y-4k=0\)

将直线和抛物线方程联立,消去\(x\)得到,\(ky^2-4y-16k=0\),则\(y_1+y_2=-\cfrac{-4}{k}=\cfrac{4}{k}\)\(y_1y_2=-16\)

\(|AB|=\sqrt{1+\cfrac{1}{k^2}}|y_1-y_2|=\sqrt{1+\cfrac{1}{k^2}}\sqrt{(y_1+y_2)^2-4y_1y_2}\)

\(=\sqrt{1+\cfrac{1}{k^2}}\sqrt{(\cfrac{4}{k})^2-4\times (-16)}=\sqrt{\cfrac{k^2+1}{k^2}}\cdot 4\cdot \sqrt{\cfrac{4k^2+1}{k^2}}\)

\(=4\cdot \cfrac{\sqrt{k^2+1}\cdot \sqrt{4k^2+1}}{k^2}\)

又点\(F\)到直线\(AB\)的距离为\(d=h=\cfrac{|3k|}{\sqrt{k^2+1}}=\cfrac{3k}{\sqrt{k^2+1}}\)

\(S_{\triangle ABF}=\cfrac{1}{2}\cdot 4\cdot \cfrac{\sqrt{k^2+1}\cdot \sqrt{4k^2+1}}{k^2}\cdot \cfrac{3k}{\sqrt{k^2+1}}\)

\(=6\times \cfrac{\sqrt{4k^2+1}}{k}=6\times \sqrt{4+\cfrac{1}{k^2}}\)

\(k\rightarrow \infty\)时,所求面积有最小值,\(S_{min}=6\times 2=12\)。故选\(B\).

法2:仿上利用均值不等式可以说明,当\(AB\)\(x\)轴垂直时,\(S_{\triangle ABF}\)有最小值;

\(S_{\triangle ABF}=\cfrac{1}{2}\cdot 3\cdot (|y_1|+|y_2|)\ge \cfrac{3}{2}\cdot 2\sqrt{|y_1y_2|}= \cfrac{3}{2}\cdot 2\cdot 4=12\),故选\(B\).

例11【2019届高三理科数学二轮用题】已知抛物线\(C:y^2=ax(a>0)\),若直线\(l:y=4x-a\)被抛物线\(C\)截得的弦长为\(17\),则与抛物线\(C\)相切且平行于直线\(l\)的直线方程为【】

$A.4x-y+2=0$ $B.4x-y+1=0$ $C.8x-2y+1=0$ $D.8x-2y-1=0$

分析:如图所示,直线过抛物线的焦点,故利用抛物线的焦点弦长公式可得,\(\cfrac{2p}{sin^2\theta}=17\)

992978-20190427110537843-265296987.jpg

又由于直线的斜率\(k=4\),则\(sin^2\theta=\cfrac{2p}{17}\)\(cos^2\theta=\cfrac{17-2p}{17}\),则\(k^2=16=tan^2\theta=\cfrac{2p}{17-2p}\)

解得\(p=8\),从而\(a=16\),抛物线为\(y^2=16\)

由图可知所求直线和抛物线相切于第一象限,故涉及到的函数为\(y=f(x)=4\sqrt{x}\)

设切点为\(P(x_0,y_0)\),则\(f'(x_0)=\cfrac{2}{\sqrt{x_0}}=4\),求得\(x_0=\cfrac{1}{4}\)\(y_0=2\)

又所求直线的\(k=4\),由点斜式方程可得,所求直线为\(4x-y+1=0\),故选\(B\).

解后反思:焦点弦的公式不止一个,此处选用这一个就是考虑变量少,运算简单。

例12【2019届高三理科数学三轮用题】已知顶点在原点,焦点在\(x\)轴正半轴上的抛物线\(C\),若其焦点到准线的距离为4,准线交\(x\)轴于点\(K\),点\(A\)在抛物线\(C\)上,\(|AK|=\sqrt{2}|AF|\),则\(\triangle AFK\)的面积为【】

$A.4$ $B.6$ $C.8$ $D.12$

分析:如图所示,由题可知,\(|OF|=|OK|=2\)\(|KF|=4\),由抛物线定义可知,\(|AF|=|AB|\),则\(|AK|=\sqrt{2}|AB|\)

992978-20190507181649734-1175420003.jpg

故可知\(\angle AKF=45^{\circ}\),在\(\triangle AKF\)中,\(|KF|=4\),设\(|AF|=x\),则\(|AK|=\sqrt{2}x\)

由余弦定理可知,\(|AF|=4\),其高为\(|KB|=4\),故\(S_{\triangle AFK}=\cfrac{1}{2}\times 4\times 4=8\),故选\(C\)

例13【2019届高三理科数学二轮用题】已知\(A\)\(B\)为抛物线\(y^2=4x\)上的点,\(O\)为坐标原点,若\(\triangle OAB\)为等边三角形,则\(\triangle OAB\)的面积为【】

$A.24$ $B.48$ $C.24\sqrt{3}$ $D.48\sqrt{3}$

分析:如图所示,由于\(\triangle OAB\)为等边三角形,则边\(AB\)必然垂直于\(x\)轴,设点\(A(4t^2,4t)\),则\(B(4t^2,-4t)\)

992978-20190507182518706-1576452706.jpg

由于\(\angle AOC=30^{\circ}\),则由斜率公式可知,\(\cfrac{4t}{4t^2}=tan30^{\circ}\),解得\(t=\sqrt{3}\)

\(|AC|=|BC|=4\sqrt{3}\),则\(|AB|=8\sqrt{3}\),故高\(|OC|=4\sqrt{3}\times \sqrt{3}=12\)

\(S_{\triangle OAB}=\cfrac{1}{2}\times 8\sqrt{3}\times 12=48\sqrt{3}\),故选\(D\).

例14【2019届高三理科数学二轮用题】
992978-20190606062251563-43215492.png

992978-20190606062253407-2047296916.png

例15【2019届高三理科数学二轮用题】已知抛物线\(C:y^2=2px(p>0)\)的焦点到准线的距离为\(4\),直线\(l'\)过点\((0,3)\)且和直线\(l:x-2y=0\)垂直,直线\(l'\)与抛物线\(C\)交于\(M\)\(N\)两点,则以\(MN\)为直径的圆的方程为【】

$A.(x-\cfrac{5}{2})^2+(y+2)^2=20$ $B.(x+\cfrac{5}{2})^2+(y-2)^2=20$
$C.(x-\cfrac{5}{2})^2+(y+2)^2=10$ $D.(x+\cfrac{5}{2})^2+(y-2)^2=10$

分析:由题可知,抛物线方程为\(y^2=8x\),直线\(l'\)方程为\(y-3=-2x\),即\(l':2x+y-3=0\)

设点\(M(x_1,y_1)\)\(N(x_2,y_2)\),线段\(MN\)的中点为\((x_0,y_0)\),联立\(y^2=8x\)\(2x+y-3=0\)

消去\(y\)得到\(4x^2-20x+9=0\),由韦达定理得到\(x_1+x_2=5\)\(x_1x_2=\cfrac{9}{4}\)

则可知\(x_0=\cfrac{x_1+x_2}{2}=\cfrac{5}{2}\),代入\(l':2x+y-3=0\),得到\(y_0=-2\);即圆心坐标为\((\cfrac{5}{2},-2)\)

又由弦长公式得到\(MN=\sqrt{1+k^2}|x_1-x_2|\)

\(MN=\sqrt{1+(-2)^2}\sqrt{(x_1+x_2)^2-4x_1x_2}=\sqrt{5}\sqrt{25-9}=4\sqrt{5}\)

故半径为\(2\sqrt{5}\),则以\(MN\)为直径的圆的方程为\((x-\cfrac{5}{2})^2+(y+2)^2=20\),故选\(A\)

转载于:https://www.cnblogs.com/wanghai0666/p/6920681.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值