教程 | 图像分类: Caltech 256数据集

本教程介绍了如何利用预训练的DenseNet121模型在Caltech 256数据集上进行图像分类。内容包括数据处理(如图像尺寸调整和白化)、DenseNet模型的解读、预训练模型加载以及神经网络的训练。通过在PyTorch框架下训练网络,克服了传统CNN的梯度消失问题,以提高分类效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Caltech 256是什么?

Caltech 256数据集是加利福尼亚理工学院收集整理的数据集,该数据集选自Google Image数据集,并手工去除了不符合其类别的图片。在该数据集中,图片被分为256类,每个类别的图片超过80张。

为什么要用Densenet121模型?

本项目使用在PyTorch框架下搭建的神经网络来完成图片分类的任务。由于网络输出的类别数量很大,简单的网络模型无法达到很好的分类效果,因此,本项目使用了预训练的Densenet121模型,并仅训练全连接层的参数。

项目流程:

1.数据处理
2.Densenet模型解读
3.加载预训练网络模型
4.训练神经网络

1、数据处理

首先从指定路径读取图像,将图像大小更改为224*224,并将图片范围从0-255改为0-1:

from PIL import Image
image= Image.open(path)
image=image.resize((224,224))
x_data= x_data.astype(numpy.float32)
x_data= numpy.multiply(x_data, 1.0/255.0)  
## scale to [0,1] from [0,255]

由于此数据集中有少量图片的色彩是单通道的,而神经网络的输入需要为三个通道,因此&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值