matlab t分布区间估计,请高手指点以下t分布最大似然估计的算法

博主分享了一个用于t分布最大似然估计的MATLAB程序,该程序在处理小规模数据时能准确估计自由度,但存在运行速度慢和估计结果偏差大的问题。程序的瓶颈在于for循环和solve函数的使用,导致复杂度增加。博主寻求简化程序的建议或替代方法,以提高效率并减小估计误差。

请高手指点以下t分布最大似然估计的算法:

function va=ml_t(data)

[m,n]=size(data);

n=max(m,n);

syms v x;

tmp = gamma((v+1)/2)/gamma(v/2);

f = tmp/(sqrt(v*pi)*(1+(x^2)/v)^((v+1)/2));

log_f=log(f);

dlog_f=diff(log_f,'v');

L=sym('0');

for k=1:n,

l=subs(dlog_f,x,data(k));

L=L+l;

end

va=solve(L);

这是我自己编的程序。我用trnd命令生成数据验证过,例如用trnd(3,30,1)生成30个服从自由度为3的t分布的数据,再利用这个函数估计参数是否接近3。结果是这套程序能够顺利通过。但是遇到以下问题:

1、程序运行过程非常非常慢!我逐条语句检查过,“瓶颈”在for循环和最后的solve这两步,而这两处之所以出现“瓶颈”是因为“l=subs(dlog_f,x,data(k));”的结果本身就相当复杂,经过几十次循环相加之后就更加复杂,这又导致最终的L相当复杂,解起来很费劲。

2、结果似乎大大地偏离了原来设定的自由度。例如上面提到的用trnd(3,30,1)生成30个服从自由度为3的t分布的数据,结果似乎远离3!(不过由于每次运行这个程序都需要花很多时间,试得不多,而且每次的数据量都不大)

我希望能够简化这套程序,不知可行不可行?或者有没有其他更好的思路?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值