请高手指点以下t分布最大似然估计的算法:
function va=ml_t(data)
[m,n]=size(data);
n=max(m,n);
syms v x;
tmp = gamma((v+1)/2)/gamma(v/2);
f = tmp/(sqrt(v*pi)*(1+(x^2)/v)^((v+1)/2));
log_f=log(f);
dlog_f=diff(log_f,'v');
L=sym('0');
for k=1:n,
l=subs(dlog_f,x,data(k));
L=L+l;
end
va=solve(L);
这是我自己编的程序。我用trnd命令生成数据验证过,例如用trnd(3,30,1)生成30个服从自由度为3的t分布的数据,再利用这个函数估计参数是否接近3。结果是这套程序能够顺利通过。但是遇到以下问题:
1、程序运行过程非常非常慢!我逐条语句检查过,“瓶颈”在for循环和最后的solve这两步,而这两处之所以出现“瓶颈”是因为“l=subs(dlog_f,x,data(k));”的结果本身就相当复杂,经过几十次循环相加之后就更加复杂,这又导致最终的L相当复杂,解起来很费劲。
2、结果似乎大大地偏离了原来设定的自由度。例如上面提到的用trnd(3,30,1)生成30个服从自由度为3的t分布的数据,结果似乎远离3!(不过由于每次运行这个程序都需要花很多时间,试得不多,而且每次的数据量都不大)
我希望能够简化这套程序,不知可行不可行?或者有没有其他更好的思路?
博主分享了一个用于t分布最大似然估计的MATLAB程序,该程序在处理小规模数据时能准确估计自由度,但存在运行速度慢和估计结果偏差大的问题。程序的瓶颈在于for循环和solve函数的使用,导致复杂度增加。博主寻求简化程序的建议或替代方法,以提高效率并减小估计误差。
1374

被折叠的 条评论
为什么被折叠?



