关于计算机应用的视频题材,《计算机应用基础》题材.doc

《计算机应用基础》

电子教案

《计算机应用基础》教案

教学对象教学时间年 月 日教学内容计算机基础知识

计算机概述

1.2 计算机系统教学目的使学生了解计算机基础知识,掌握计算机系统的概念教学重点了解计算机系统的组成以及各部分的主要功能

掌握键盘的使用,学会标准指法操作教学难点计算机系统的组成及各部分的主要功能建议学时理论:2 上机:2教学教具多媒体教学系统教学方法理论:使用多媒体教学方法讲授(.PPT); 上机:指导上机实验演示设计

板书设计计算机概述

计算机系统教学过程课程导入

主要内容介绍什么是计算机,计算机的特点,计算机的应用与发展:

什么是计算机;

计算机的发展;

计算机的分类;

计算机的主要应用;

计算机硬件系统:

结合具体实例进行讲解;

计算机软件系统:

举例说明计算机的软件系统,使学生对这一抽象概念有较深刻的印象。

详细内容及要求一、教学内容: 1、了解计算机的发展;

2、了解计算机系统的组成以及各部分的主要功能;

3、掌握键盘的使用,熟练掌握标准指法操作;

4、了解计算机中数据的表示编码。

二、教学基本要求

了解计算机的特点、发展史(包括微型计算机的发展史)、类型、应用领域及前景;掌握计算机软件系统及硬件系统构成,了解微机的硬件系统,包括掌握微机系统硬件组成及主要性能指标。了解微机的软件系统,包括掌握机器指令与计算机语言(机器语言,汇编语言,高级语言)的概念、系统软件与应用软件的概念;数据在计算机中的表示及编码,包括了解二进制数概念、计算机内采用二进制数的优点。

三、重点与难点

重点:计算机的发展史和应用领域,计算机软件系统及硬件系统构成,数据在计算机中的表示及编码

难点:计算机基本工作原理,数据在计算机中的表示及编码。

四、课时分配:讲授4学时、实验2学时

五、教学方法:讲授(ppt)

六、教学过程:

第一讲、计算机概述(1学时)

1、什么是计算机(概念)

2、计算机发展过程

阶段

年份

物理器件

软件特征

应用范围

第一代

46-57

电子管

机器语言、汇编语言

科学计算

第二代

58-64

晶体管

高级语言

科学计算、数据处理、工业控制

第三代

65-70

小规模集成电路

操作系统

科学计算、数据处理、工业控制、文字处理、图形处理

第四代

70至今

大规模集成电路

数据库网络等

各个领域

3、计算机技术发展的趋势

巨型化、高性能、开放式、多媒体化、智能化、网络化

4、计算机的分类:

1)、根据规模大小分类:巨型机、大型机、中型机、小型机、微机、

2)、根据用途分类:通用计算机、专用计算机

5、计算机的主要应用

科学计算、数据处理、计算机控制、计算机辅助系统、人工智能、办公自动化系统中的应用

注:记住一些专用名字的缩写

详细内容及要求第二讲、计算机系统(1学时)

计算机系统:是由硬件系统和软件系统两部分组成;两者相辅相成,构成计算机系统的统一体。

1、计算机硬件系统

硬件系统组成

由运算器、控制器、存储器、输入设备和输出设备五部分组成。

1) 中央处理器CPU

运算器和控制器合称为中央处理单元,简称CPU。

CPU的作用是处理数据、存取数据或指令、协调各部件工作等。

2) 存储器

存储器用于保存数据和程序。

存储器分为内部存储器和外部存储器

内存又分为只读存储器(ROM)和随机存储器(RAM)

外存分为软盘、硬盘、光盘、磁带

它们的特点和缺点

存储器的有关术语简述如下:

*位(Bit):存放一位二进制数即0或1。位是计算机中存储信息的最小单位。

*字节(Byte):8个二进制位为一个字节。为了便于衡量存储器的大小,统一以字节(Byte简写为B)为单位。字节是计算机中存储信息的基本单位

*地址:整个内存被分成若干个存储单元,每个存储单元一般可存放8位二进制(字节编址)。每个存储单元可以存放数据或程序代码。为了能有效地存取该单元内的内容,每个单元必须有唯一的编号(称为地址)来标识。

*读操作(Read):按地址从存储器中取出信息,不破坏原有的内容,称为对存储器进行“读”操作。

*写操作(Write):把信息写入存储器,原来的内容被覆盖,称为对存储器进行“写”操作。

*主频 主频是衡量CPU运行速度的重要指标。它是指系统时钟脉冲发生器输出周期性脉冲的频率。通常以赫兹(Hz)为单位。目前的奔腾Ⅵ微处理器的主频已高达1.5GHz、2.2GHz。

*字长 字长是CPU可以同时处理的二进制数据位数。如64位微处理器,一

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值