梦幻西游口袋版服务器信息错误,梦幻西游:合出这只宝宝的玩家很懵,藏宝阁卖不了,打书怕掉技能...

本文讲述了梦幻西游游戏中五开玩家遭遇的挑战,包括客户端可能针对五开的崩溃问题,以及游戏内对五开的限制调整。此外,还提到了一位玩家鉴定出双蓝字物理系武器但伤害不足,以及老玩家回归参加帮战可能获得的额外奖励,如金刚石等。最后,文章讨论了一名玩家断绝高好友度关系的特殊成就和一只拥有出其不意和须弥真言双特殊技能泡泡的困境。
摘要由CSDN通过智能技术生成

游戏的意义就在于它能够给人带来快乐,如果过多的掺杂其他的东西就失去了其本身的意义,大家好,我是小三,每天给大家分享游戏中的八卦趣事。

五开绝对是梦幻玩家的主格调,那个时候大家刷任务的物品产出几率还是比较高的,所以那个时候就有非常多的玩家通过任务获得了大量的物品开始谋利,后来官方就开始限制五开的牟利方式了,首先削弱的是五开的配置,然后又降低了大家刷任务的效率,现在官方对五开的调整都是进行的暗改。

客户端错误真是针对五开设定的,多开在线三小时就崩溃

72c408443d8c7d5b94e1724b4b59b030.png

调整完了五开的组合,下调了刷任务的效率之后官方在队伍开进行的限制就不仅仅是游戏内容了,在客户端方面一些玩家也感觉换进行了调整,上面的这位多开的玩家表示自己的梦幻西游的客户端每天在线三个小时以上的时候就会出现客户端崩溃的情况,每天都会出来一次,他现在都感觉习惯了,所以他感觉这个客户端的崩溃就是策划对于五开的调整。

物理系的追求碰上逆天三蓝字能擦出什么火花?

7373f3e098495a36a73ce2506bb347d0.png

上面的这位玩家获得的这两个成就分别是逆天的双蓝字跟物理系的追求,逆天双蓝的是鉴定80级以上的装备时出现两种特技或者特效,物理系的追求,是鉴定出一把专用的武器,比他更高级的场教授物理系的梦想,因为那样的成就标志着鉴定出来的这一把武器的伤害属性肯定比非专用上限高的,如果将上面的这两个成就同时叠加在一把武器上会是什么样的属性?

5a14748bab83a4904fbf1329ed125588.png

这就是那一把同时出现了两个成就的武器,这把武器带的双蓝字效果分别是神佑和弱点击破,虽然是专用武器,但是这把武器的伤害不高,增加了17点力量和18点耐力,现在镶嵌了六级的宝石,目前的总伤害是626,这样的武器也只能在任务中使用了。

老玩家回归参加帮战有额外奖励,运气好会给五宝呢

017c9d1203ec5ea238ca25e6e2b13e7c.png

大家知道上面的这位玩家获得的这一个金刚石是在什么任务中获得的吗?他的这一个金刚石是在帮战中获得的,而且还不是在帮战中被清出去以后获得的,他的这一个金刚石是老玩家回流奖励中关于帮战部分的任务进度完成之后就有可能会获得,这里的奖励包括五宝、超级金柳露等物品奖励,只不过这位玩家的运气比较好罢了,其他人在该奖励中获得的都是摄妖香。

这个成就代表着一名挚友的逝去

2bca4c856b73a72f1514e32fe7babe6e.png

在梦幻中两个角色之间经常在一起刷任务,每场战斗的时候都会增加好友度的,两个角色之间的好友度达到1000就可以结成同袍或者夫妻关系,达到3000以上就可以领取全部的同胞或者夫妻技能了,上面的这位玩家获得的这一个成就比较特殊,他将自己一个3000好友都以上的好友断绝的关系,如果这位玩家不是在刷成就,那么这一个玩家跟她的好友之间有可能闹了一个比较大的矛盾。

合出这只宝宝的玩家很懵,藏宝阁卖不了,打书怕掉技能

22b6bd9a943ca04898b6dd1ceef57788.png

上面是一只拥有的出其不意和须弥真言两个召唤兽特殊技能的泡泡,这只泡泡目前有五个技能,现在这位玩家不知道怎么办了,因为这只泡泡比较特殊,现在的这个样子没办法上架藏宝阁,因为他还不满足个性宠的上架条件,但是给这一只召唤兽打书有比较难,因为比较少,打书的风险比较高,但是在游戏内喊着卖吧又有可能会被坑,所以这位玩家现在比较纠结。

举报/反馈

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值