为什么正定矩阵等于转置_线性代数之——对称矩阵及正定性

cbe20639a7035e805c9120aac1cb66a4.png
是对称的时候,
有什么特殊的呢?

1. 对称矩阵的分解

如果

是对称矩阵,也就是
。对比以上两个式子,我们可以得到
,也就是
特征向量矩阵
是正交的

对称矩阵具有如下的性质:

  • 它们的特征值都是实数
  • 可以选取出一组标准正交的特征向量
每个对称矩阵都可以分解为
中为实数的特征值,
中为标准正交的特征向量。
  • 例 1

特征值和特征向量分别为:

特征向量

位于零空间,特征向量
位于列空间。有子空间基本定理可知,零空间正交于行空间,这里
是对称矩阵,所以列空间和行空间是一样的,因此两个特征向量是垂直的。而要得到标准正交向量,我们只需再除以它们各自的长度即可。所以有:

一个实对称矩阵的所有特征值都是实数。

证明

实数的共轭还是它本身,两个数积的共轭等于共轭的积,即

对 (1) 进行转置可得

乘以
,将 (2) 式乘以
,可得

由于右边为向量长度的平方,因此不为零。对比 (3) 、(4) 两式可得

,所以对称矩阵的特征值一定为实数。
一个实对称矩阵的所有特征向量(对应于不同特征值)是正交的。

证明

假设有

,并且
,那么

等式左边为

,等式右边为
,因为
,所以有
,也即两个特征向量垂直。
  • 例 2

特征向量分别为:

两个特征值的和为矩阵的迹,即对角线元素的和。

我们再来看

矩阵分解后的结果

扩展到

维的情况,
,其中每一个
都是投影矩阵,
,特征向量的长度为 1,所以分母略去了。也就是说,
对称矩阵是其特征向量投影矩阵的线性组合

2. 实矩阵的复特征向量

针对对称矩阵,其特征值和特征向量都是实的。但是,非对称矩阵非常容易得到虚的特征值和特征向量。在这种情况下,

是不同的,我们得到了一个新的特征值
和新的特征向量
针对实矩阵,复数的特征值和特征向量总是一对共轭对。

c9f2e73d9c2abf1e93c000e67f3620f8.png

3. 特征值和主元

矩阵的主元和特征值是非常不同的,主元是通过消元得到的,而特征值是通过求解

得到的。到目前为止,它们唯一的联系就是:
所有主元的乘积等于所有特征值的乘积,都等于矩阵的行列式值

针对对称矩阵,还有一个隐藏的关系:主元的符号和特征值的符号一致,也就是正的主元个数等于正的特征值的个数

证明

对称矩阵可以被分解为

的形式。

2cd22a492c355d3076231b4f30b3b1c3.png

变成
的时候,
就变成了
,也就是由
变成了
的特征值为 4 和 -2,
的特征值为 1 和 -8。当
中左下角的元素从 3 变到 0 的时候,
就变成了
。在这个过程中,如果特征值符号发生改变的话,那肯定会有一个中间时刻,这时候特征值为 0,也就意味着矩阵是奇异的。但是最后的矩阵
一直有两个主元,始终是可逆的,从来不可能是奇异的,因此特征值的符号不会发生改变。

特别地,所有的特征值都大于零,也就是所有的主元都大于零,这种情况下,矩阵就称之为是正定的

4. 重复的特征值

当没有重复特征值的时候,特征向量一定是线性不相关的,这时候矩阵一定可以被对角化。但是一个重复的特征值可能会导致特征向量的缺乏,这有些时候会发生在非对称矩阵上,但是对称矩阵一定会有足够的特征向量来进行对角化

证明

ef2bcffd2c6f265a2265efe2b04b021c.png
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值