柯特斯公式的matlab,MATLAB第十二讲数值积分讲述.ppt

MATLAB第十二讲数值积分讲述

数值积分 数值积分Matlab实现 * * 用MATLAB 作数值积分 矩形 公式 Sum(x) 输入数组x(即fk),输出x的和(数) cumsum(x) 输入数组x,输出x的依次累加和(数组) 梯形 公式 trapz(x) 输入数组x,输出按梯形公式x的积分(单位步长) trapz(x,y) 输入同长度数组 x,y,输出按梯形公式 y对x的积分(步长不一定相等) 用MATLAB 作数值积分 辛普森公式 quad(@fun,a,b,tol,trace) [I,fn]=quad(…) 用自适应辛普森公式计算 tol为绝对误差,缺省时为10-6 Gauss-Lobatto公式 quadl(@fun,a,b,tol,trace) [I,fn]=quadl(…) 用自适应Gauss-Lobatto公式计算 tol为绝对误差,缺省时为10-6 注意:fun.m中应以自变量为矩阵的形式输入(点运算) 矩形域上计算二重积分的命令: dblquad(@fun,xmin,xmax,ymin,ymax,tol) 广义积分、二重和三重积分 长方体上计算三重积分的命令: triplequad(@fun,xmin,xmax,ymin,ymax, zmin,zmax,tol) 注:fun是被积函数,本身可以有自己的参数 广义积分: 通过分析和控制误差,转换成普通积分 quadv(@fun,a,b,tol,trace) 向量值积分: 用MATLAB 作数值积分 例. 计算 1)矩形公式和梯形公式 将(0, ? /4)100等分 2)辛普森公式和Gauss-Lobatto公式 精确、方便 无法计算用数值给出的函数的积分 Jifen1a.m Jifen1b.m 精确值为 数值积分的应用 实例 人造卫星轨道长度 轨道长度 y x o 近地点s1=439km,远地点s2= 2384km s1 s2 地球半径r=6371km r 需要作数值积分 * * * * * * * 将以上各区间的积分近似值相加可得 它一共只需计算17个 的值. * 6.1 一般理论 求积公式 含有 个待定参数 当 为等距节点时得到的插值求积公式其代数精度至少为 次. 如果适当选取 有可能使求积公式 具有 次代数精度. 6 高斯求积公式 * 试确定节点 及 和系数 ,使其具有近可能高的代数精度. (6.2) 例8 求积公式 (6.1) 解 令公式(6.1)对于 准确成立,得 * 用(6.2)式中的第3式减去 乘(6.2)中的第2式有 用第4式减去第2式乘 ,得 由此得 于是可取 . 用前一式代入则得 由此得出 与 异号,即 ,从而有 * 再由(6.2)式的第1式得 ,于是有 (6.3) 当 时,(6.3)式两端分别为 及 ,(6.3)式对 不精确成立,故公式(6.3)的代数精度为3. 实际上,形如(6.1)的求积公式其代数精度不可能超过 3,因为当 时,设 这是4次多项式,代入(6.1)式左端有 ,而右 端为0.表明两个节点的求积公式的代数精度为3. 一般 节点的求积公式的代数精度最高为 次. * 为求积节点,可适当选取 及 使(6.4)式具有 次代数精度. 下面研究带权积分 这里 为权函数,类似(1.3),求积公式为 (6.4) 为不依赖于 的求积系数. (1.3) * 根据定义要使(6.4)具有 次代数精度,只要取 (6.5) 当给定权函数 ,求出右端积分,则可由(6.5)解得 令(6.4)精确成立, 即 定义4 如果求积公式(6.4)具有 次代数精度,则称其节点 为高斯点,相应公式(6.4)称为高斯求积公式. * (6.4)是关于 及 的非线性方程组,当 时求解非常困难. 如果事先确定了节点 ,则可以利用(6.5)求解 .此时(6.5)是关于 的线性方程组. 下面讨论如何选取节点 才能使求积公式(6.4)具有 次代数精度. * 设 上的 个节

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值