海岸鸿蒙质检质控样浓度一览表,环境标准样品数值对照表(质控样)

编号 1 2 3 4 5 6 7 8 9 10 11 13 16 20 23 25 26 28 29 30 31 33 35 37 38 40 43 45 47 49 51 53 55 57 59 60 61 62 63 64 65 66 67 68 69 70 1 2 3 5 6 7 9 1 2 3 4 5 6

类别

NH4-N

TOC

环境标准样品数值对照表 编号 浓度(±) 110907 0.192mg/l 110908 0.238mg/l 120209 0.259mg/l 200524 0.698±0.019 mg/l 200525 2.82±0.11mg/l 200526 1.08±0.06 mg/l 200527 1.84±0.07 mg/l 200528 23.9±0.8mg/l 200529 0.668±0.021 mg/l 200530 2.71±0.12 mg/l 200531 1.59±0.06 mg/l 200532 0.501±0.037 mg/l 200533 2.21±0.09 mg/l 200534 0.799±0.036mg/l 200535 2.88±0.14mg/l 200536 1.18±0.06mg/l 200537 0.539±0.03mg/l 200538 2.74±0.12mg/l 200539 1.31±0.06mg/l 200540 0.193±0.022mg/l 200541 2.02±0.08mg/l 200542 1.5±0.07mg/l 200543 0.699±0.035mg/l 200544 0.501±0.027mg/l 200545 1.34mg/l 200546 2.55mg/l 200547 0.496±0.018mg/l 200548 1.75±0.08mg/l 200549 0.778±0.042mg/l 200550 2.82±0.10mg/l 200551 1.22±0.06mg/l 200552 8.75±0.35mg/l 200553 2.77±0.14mg/l 200554 0.564±0.026mg/l 200555 1.44±0.08mg/l 200557 1.16±0.08mg/l 200558 0.698mg/l 200559 2.63mg/l 200560 1.53±0.08mg/l 200561 0.391±0.022mg/l 200562 1.48±0.07mg/l 200563 2.72±0.10mg/l 200564 0.589±0.028 200565 1.21±0.06mg/l 3510122 1.51±0.07 mg/l 3510123 25.1±1.1 mg/l 206501 10.1±0.7 206505 9.43mg/l 206506 73.9mg/l 206502 12.0±5% 206503 24.4±1.5 206504 10.9±4 206507 8.08±0.70 203121 4.81±0.39 mg/l 203122 5.91±0.40mg/l 203123 2.61±0.32 203123 2.61±0.32 mg/l 203124 3.38±0.27 mg/l 203125 6.48±0.48/ mg/l

0.014 0.017 0.026

备注

0.06 0.1

2014.9止 2014.9止 2015.1止 07.04 07.04 08.04 08.04 09.04 09.04 09.04 10.1 10.1 11.04 11.04 11.04 12.04 13.03 13.03 13.03 14.04 14.04 14.04 14.04 15.04 2010.5-2015.4 2010.5-2015.4 16.03 16.03 16.03 16.03 16.08 16.08 17.06 17.06 17.06

0.045 0.1

2013.5-2018.4 06.12 06.12 0.75 3.1 2010.5-2015.4

07.04 08.04 08.04 09.04 09.05

1-1019-jpg_6_0_______-628-0-0-628.jpg

AI实战-泰坦尼克号生还可能性数据集分析预测实例(含19个源代码+59.76 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共121.84 KB;数据大小:1个文件共59.76 KB。 使用到的模块: pandas numpy seaborn matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix os scipy.stats sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OneHotEncoder sklearn.impute.KNNImputer sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.model_selection.cross_val_score sklearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.ensemble.GradientBoostingClassifier sklearn.linear_model.LogisticRegression sklearn.naive_bayes.GaussianNB sklearn.metrics.roc_curve xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier sklearn.tree.DecisionTreeClassifier sklearn.preprocessing.LabelEncoder imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.GridSearchCV math sklearn.neighbors.KNeighborsClassifier sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.ConfusionMatrixDisplay torch dataclasses.dataclass typing.List typing.Tuple typing.FrozenSet typing.Set typing.Dict fcapy.lattice.ConceptLattice fcapy.lattice.formal_concept.FormalConcept fcapy.poset.POSet fcapy.visualizer.line_layouts.calc_levels sparselinear.SparseLinear sklearn.neural_network.MLPClassifier fcapy.context.FormalContext fcapy.visualizer.LineVizNx networkx sklearn.preprocessing.MinMaxScaler sklearn.ensemble.BaggingClassifier torch.nn torch.optim sklearn.datasets.load_iris
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值