计算机性能指标ppt,计算机网络—评价网络的性能指标知识讲解.ppt

这篇讲解聚焦于计算机网络的性能评估,介绍了带宽(如kb/s, Mb/s等)、吞吐量、时延(包括发送、传播、处理和排队时延)的概念及计算。强调带宽是最大传输速率,吞吐量是实际传输数据量,时延涉及多个组成部分。还探讨了利用率与时延的关系,并通过实例比较了电路交换与分组交换的优劣。练习题则涉及不同场景下网络性能的计算与分析。
摘要由CSDN通过智能技术生成

《计算机网络—评价网络的性能指标知识讲解.ppt》由会员分享,提供在线免费全文阅读可下载,此文档格式为ppt,更多相关《计算机网络—评价网络的性能指标知识讲解.ppt》文档请在天天文库搜索。

1、计算机网络—评价网络的性能指标常用单位千比每秒,即 kb/s (103 b/s)兆比每秒,即 Mb/s(106 b/s)吉比每秒,即 Gb/s(109 b/s)太比每秒,即 Tb/s(1012 b/s)区分:b/s与B/s计算机网络中,以比特(bit)为单位进行数据传输,因此描述网速的单位为b/s计算机中,以字节(Byte)为单位描述数据,因此计算机传输数据的速率单位为B/s其中1Byte=8bit2. 带宽 模拟传输网(电话网):信号具有的频带宽度,单位是赫(或千赫、兆赫、吉赫等)。数字传输网(计算机网络):在计算机网络中,“带宽”是数字信道所能传送的“最高数据率”的同义语,单位是“比特每秒”,或 b/s (bit/s)。 一般家庭上网用户带宽为2M、4M2M指的是2Mb/s,相当于2M/8=250kB/s4M指的是4Mb/s,相当于4M/8=500kB/s但实际网速达不到最大值。带宽和。

2、网速的关系:带宽是网速允许的最大值。3. 吞吐量吞吐量(throughput):表示在单位时间内通过某个网络(或信道、接口)的数据量。吞吐量经常用于对现实世界中的网络的一种测量,以便知道有多少数据量通过了网络。最大吞吐量=带宽*时间…1 0 1 1 0 0 1发送器队列在链路上产生传播时延结点在发送器产生传输时延(即发送时延)在发送节点中产生处理时延和排队时延数据链路时延:数据从网络的一端传送到另一端所需的时间4. 时延(delay 或 latency)发送时延 :数据块从结点进入到传输媒体所需要的时间。传播时延:电磁波在信道中需要传播一定的距离而花费的时间。 传播时延 = 信道长度(米)信号在信道上的传播速率(米/秒)发送时延 = 数据块长度(比特)信道带宽(比特/秒)处理时延:为存储转发进行处理所花费的时间。排队时延:结点缓存队列中分组排队所经历的时延,取决于网络中当时的通信量。总时延。

3、 = 发送时延 + 传播时延 + 处理时延 + 排队时延往返时延:从发送方发送数据开始,到发送方收到接收方的确认经历的时间。往返时延 = 2*总时延思考题收发两端之间的传输距离为1000km,信号在媒体上的传播速率为2*108m/s。试问以下情况的发送时延和传播时延。数据长度为107比特,数据发送速率为100kb/s数据长度为103比特,数据发送速率为1Gb/s通过计算,能够得出什么结论?5.利用率信道利用率指出某信道有百分之几的时间是被利用的(有数据通过)完全空闲的信道的利用率是零信道利用率并非越高越好网络利用率是全网络的信道利用率的加权平均值。时延与网络利用率的关系根据排队论的理论,当信道的利用率增大时,该信道引起的时延迅速增加。 若令 D0 表示网络空闲时的时延,D 表示网络当前的时延。在适当的假定条件下,可以用下面的简单公式表示 D 和 D0之间的关系: U 是网络的利用率,数值在。

4、 0 到 1 之间。 时延 D利用率 U10D0时延急剧增大假定网络的利用率到达了90%,请估算现在的网络时延是它的最小值多少倍?小结影响网络的性能指标主要有:发送的速度(动力足)传输的速度(路况好)传输介质的长度(距离短)练习1判断下面结论的正误,并给出解析。带宽为1Mb/s的网络比带宽为1kb/s的网络的比特流在网络中的传播速率高得多。带宽为1Mb/s的网络比带宽为1kb/s的网络数据传输效率高得多。练习2计算下列情况的总时延在通路上配置一个存储转发交换机的10Mb/s的以太网,分组大小是5000位,假定每条链路的传播时延是10μs,并且交换机在接收完分组后立即转发(没有处理时延)。和上述情况相同,但有3个交换机。练习题请比较电路交换和分组交换。要传送的报文共x(bit)。从源点到终点共经过k段链路,每段链路的传播时延为d(s),数据率为b(b/s)。在电路交换时电路的建立时间为s(s。

5、)。在分组交换时分组长度为p(bit),且各结点的排队等待时间可忽略不计。问:在怎样的条件下,分组交换的时延比电路交换要小?(提示:k段链路有几个结点)在分组交换网中,设报文长度和分组长度分别为x和(p+h)bit,其中p为分组的数据部分的长度,而h为每个分组所带的控制信息固定长度,与p的大小无关。通信的两端共经过k段链路。链路的数据率为b(b/s),传播时延和结点的排队时间均可忽略不计。若使总时延为最小,问分组的数据部分长度p应为多大?练习题请比较电路交换和分组交换。要传送的报文共x(bit)。从源点到终点共经过k段链路,每段链路的传播时延为d(s),数据率为b(b/s)。在电路交换时电路的建立时间为s(s)。在分组交换时分组长度为p(bit),且各结点的排队等待时间可忽略不计。问:在怎样的条件下,分组交换的时延比电路交换要小?(提示:k段链路有几个结点)在分组交换网中,设报文长度和分组长度分别为x和(p+h)bit,其中p为分组的数据部分的长度,而h为每个分组所带的控制信息固定长度,与p的大小无关。通信的两端共经过k段链路。链路的数据率为b(b/s),传播时延和结点的排队时间均可忽略不计。若使总时延为最小,问分组的数据部分长度p应为多大?此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢。

AI实战-泰坦尼克号生还可能性数据集分析预测实例(含19个源代码+59.76 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共121.84 KB;数据大小:1个文件共59.76 KB。 使用到的模块: pandas numpy seaborn matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix os scipy.stats sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OneHotEncoder sklearn.impute.KNNImputer sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.model_selection.cross_val_score sklearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.ensemble.GradientBoostingClassifier sklearn.linear_model.LogisticRegression sklearn.naive_bayes.GaussianNB sklearn.metrics.roc_curve xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier sklearn.tree.DecisionTreeClassifier sklearn.preprocessing.LabelEncoder imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.GridSearchCV math sklearn.neighbors.KNeighborsClassifier sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.ConfusionMatrixDisplay torch dataclasses.dataclass typing.List typing.Tuple typing.FrozenSet typing.Set typing.Dict fcapy.lattice.ConceptLattice fcapy.lattice.formal_concept.FormalConcept fcapy.poset.POSet fcapy.visualizer.line_layouts.calc_levels sparselinear.SparseLinear sklearn.neural_network.MLPClassifier fcapy.context.FormalContext fcapy.visualizer.LineVizNx networkx sklearn.preprocessing.MinMaxScaler sklearn.ensemble.BaggingClassifier torch.nn torch.optim sklearn.datasets.load_iris
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值