计算机辅助化合物合成,麻省理工重磅《Science》:基于AI的逆合成路线设计,机器人全自动合成了15个药物分子...

麻省理工学院的研究人员在Science上发表论文,介绍了一个结合AI设计和机器人执行的自动化化学合成平台。该平台通过人工智能算法提出合成路线,包括反应条件,并自动执行合成操作,实现了全流程自动化。此系统已经在15种化学小分子药物的合成中得到验证,大大提高了合成效率,如30倍速的利多卡因合成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

虽然自动化学合成机器的工作已经被报道过(Science:化学计算机问世,药物合成进入自动化时代),但是能够将计算机辅助合成路线设计(CASP)、反应条件优化与评估、以及机器人执行等全流程进行整合的的自动化合成平台还未被开发。

8月9日,最新一期《Science》杂志发表了来自美国麻省理工学院(MIT)研究人员一篇题为“A robotic platform for flow synthesis of organic compounds informed by AI planning”的论文。

文章描述了一种结合AI设计合成路线和机器人执行的自动化合成平台,该方法基于美国专利和Reaxys数据库中的反应训练了人工智能算法,能够为给定分子提出合成路线,包括反应条件,并根据步骤数和预测产量评估哪条路径最佳。

同时,该系统拥有一个灵活的机器人手臂,能够执行所有合成操作流程,实现自动化合成。研究人员证明该机器人平台可以成功用于15个化学小分子药物的合成路线设计和自动化合成。

来源:Science. 利多卡因30倍速合成过程示例。其中反应器选择,反应器放置,试剂管线组装,工艺模块密封,工艺堆栈压缩,工艺模块释放,反应器拆卸和反应器存储的步骤以较少加速的插图突出显示。

合成路线规划模块

Synthesis-planning module

计算机辅助合成路线设计(CASP)在进入实验室前已经被作为一种工具帮助化学家确定反应路线。如今,从反应数据库(例如Reaxys,SciFinder)中搜索已知化合物的已知反应已成为一项常规技能。

然而,除了最近报道的Chematica程序可以基于专业编码对新路线进行设计外,计算机设计合成路线几乎没有实质性的进展。数据科学和机器学习的最新进展带来了科学家对CASP的新兴趣,最近的一些研究,包括Segler等人应开发的Monte Carlo树加速了计算机辅助合成路线设计的发展。

MIT研究人员开发的新系统结合了三个主要步骤:首先,由人工智能指导的软件提出了合成分子的途径,然后专家化学家审查这条路线并将其细化为化学“配方”,最后将配方发送到机器人平台,自动组装硬件并执行反应构建分子。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值