Datax的执行过程
要想进行调优,一般先要了解执行过程,执行过程如下:

过程详细说明如下:
DataX完成单个数据同步的作业,我们称之为Job,DataX接受到一个Job之后,将启动一个进程来完成整个作业同步过程。DataX Job模块是单个作业的中枢管理节点,承担了数据清理、子任务切分(将单一作业计算转化为多个子Task)、TaskGroup管理等功能。
DataXJob启动后,会根据不同的源端切分策略,将Job切分成多个小的Task(子任务),以便于并发执行。Task便是DataX作业的最小单元,每一个Task都会负责一部分数据的同步工作。
切分多个Task之后,DataX Job会调用Scheduler模块,根据配置的并发数据量,将拆分成的Task重新组合,组装成TaskGroup(任务组)。每一个TaskGroup负责以一定的并发运行完毕分配好的所有Task,默认单个任务组的并发数量为5。
每一个Task都由TaskGroup负责启动,Task启动后,会固定启动Reader—>Channel—>Writer的线程来完成任务同步工作。
DataX作业运行起来之后, Job监控并等待多个TaskGroup模块任务完成,等待所有TaskGroup任务完成后Job成功退出。否则,异常退出,进程退出值非0
简单总结过程如

本文详细介绍了DataX的执行过程,并提出了两种优化策略:提升单个Channel速度和增加Job内的Channel并发数。通过配置DataX的byte或record限速,以及调整JVM堆参数,可以有效提高数据同步效率。同时警告,过多的Channel可能导致CPU和内存消耗增加,应根据实际需求平衡配置。测试结果显示,适当的配置调整能显著减少数据同步时间。
最低0.47元/天 解锁文章
2614

被折叠的 条评论
为什么被折叠?



