(计算机科学各主领域及其基本问题
计算机科学各主领域及其基本问题本节综合CC2013和CC2001报告,给出计算机科学各领域的简介,以及计算机科学中各领域的基本问题。以下学科领域按字母先后顺序排列,不分轻重。算法与复杂性(Algorithms and Complexity,AL)算法是计算机科学和软件工程的基础。现实世界中任何软件系统的性能仅依赖于两个方面:一方面是所选择的算法;另一方面是在各不同层次实现的效率。对所有软件系统的性能而言,好的算法设计都是至关重要的。此外,算法研究能够深刻理解问题的本质和可能的求解技术,而不依赖于具体的程序设计语言、程序设计模式、计算机硬件或其他任何与实现有关的内容。计算的一个重要内容就是根据特定目的选择适当的算法并加以运用,同时认识到可能存在不合适的算法。这依赖于对那些具有良好定义的重要问题求解算法的理解,以及认识到这些算法的优缺点和它们在特定环境中的适宜性。效率是贯穿该领域的一个核心概念。下面,给出算法与复杂性领域的基本问题。(1)对于给定的问题类,最好的算法是什么?要求的存储空间和计算时间有多少?空间和时间如何折中?(2)访问数据的最好方法是什么?(3)算法最好和最坏的情况是什么?(4)算法的平均性能如何?(5)算法的通用性如何?2.体系结构(Architecture and Organization,AR)计算机在计算技术中处于核心地位。如果没有计算机,计算学科将只是理论数学的一个分支。作为计算专业的学生,都应该对计算机系统的功能部件、功能特点、性能和相互作用有一定的理解,而不应该只将计算机看作是一个执行程序的黑盒子。了解计算机体系结构和组织还有一定的实际意义。为了构造程序,需要理解计算机体系结构,从而使该程序在一台真正的机器上能更有效地运行。在选择用于应用的系统时,应该理解各种部件之间的折中,如CPU、时钟频率与内存大小的折中。下面,给出体系结构领域的基本问题。(1)实现处理器、内存和机内通信的方法是什么?(2)如何设计和控制大型计算系统,而且使其令人相信,尽管存在错误和失败,但它仍然是按照我们的意图工作的?(3)哪种类型的体系结构能有效地包含许多在一个计算中能并行工作的处理元素?(4)如何度量性能?3.计算科学(Computational Science,CN)从该学科诞生之日起,科学计算的数值方法和技术就构成了计算机科学研究的一个主要领域。随着计算机问题求解能力的增强,该领域(正如该学科一样)已经在广度和深度两方面得到了发展。现在,科学计算本身就代表了一个学科,一个与计算机科学密切相关的学科。为此,CC2001任务组只是将它划为计算机科学的一个主领域,但不确定任何核心知识单元,也就是说,尽管它是计算机科学的一个组成部分,但不要求每个教学大纲都必须包含这些内容。对于希望学习这部分知识的人,该领域提供了许多有价值的思想和技术,包括数值表示的精度、误差分析、数值技术、建模和仿真。同时,学习过该领域课程的学生有机会在宽阔的应用领域中应用这些技术,例如下面这些领域:(1)分子力学。(2)流体力学。(3)天体力学。(4)经济预测。(5)优化问题。(6)材料的结构化分析。(7)生物信息学。(8)计算生物学。(9)地质建模。(10)X断层摄影术的计算机化。下面,给出科学计算领域的基本问题。(1)如何精确地以有限的离散过程近似表示连续和无限的离散过程?(2)如何处理这种近似所产生的错误?(3)给定某一类方程在某精确度水平上能以多快的速度求解?(4)如何实现方程的符号操作,如积分、微分以及到最小项的归约?(5)如何把这些问题的答案包含到一个有效的、可靠的、高质量的数学软件包中?4.离散结构(Discrete Structures,DS)离散结构是计算机科学的基础内容。尽管很少有计算机科学家专门从事离散结构的研究,但计算机科学许多领域的工作都要用到离散结构的概念。离散结构包括集合论、数理逻辑、代数系统、图论和组合数学等重要内容。离散结构的内容在数据结构、算法以及其他计算机科学领域都有广泛的运用。例如,在形式规格、验证以及密码学的研究和学习中,需要有生成并理解形式证明的能力;在计算机网络、操作系统、编译系统等领域要用到图论的概念;在软件工程和数据库等领域需要使用集合论的概念。随着计算机科学与技术的日益成熟,越来越完美的分析技术被用于解决实际问题。为理解将来的计算技术,需要有坚实的离散结构基础。计算学科的根本问题是“能行性”的问题。而凡是与“能行性”有关的讨论,都是处理离散对象的。因为非离散对象,即所谓的连续对象,是很难进行能行处理的。因此,“能行性”这个计算学科的根本问题决定了计算机本身的结构和它处理的对象都是离散型的,甚至许多连续型的问题也必须在转化为离散型问题以后才能被计算机处理。例如,计算定积分就是把它变成离散量,再用分段求和的方法