python筛选字符型列,Pandas 如何筛选包含特定字符的列

本文介绍了如何在大型数据集中使用if判断、列表解析、str.contains()和filter函数高效查找包含'xxx'的列,并演示了如何通过df.filter()筛选特定行。此外,还提及了filter函数的正则表达式匹配功能。通过实例代码展示,适合数据处理与筛选初学者参考。
摘要由CSDN通过智能技术生成

问题提出:

比如有一个三百多列的数据集,想要快速找到包含xxx的列,这里有三种方法

if判断+列表解析式

[x for x in df.columns if 'xxx' in x]

str.contain()+列表解析式

[x for x in df.columns[df.columns.str.contain('xxx')]]

filter函数

df.filter(like='xxx').columns

关于filter,这里可以多说一句,除了like匹配之外,还支持正则表达式匹配,参数为regex。

官方api上给出了filter更详细的用法,除了过滤列名外,还可以在行、列上进行筛选,filter全部的参数如下:

item:接收list类型参数,保留参数内项目的标签,举例

# 等同df[['a', 'b', 'c']]

df.filter(item=['a', 'b', 'c'])

like like='xxx' 等同 ‘xxx' in labels

regex 正则表达式,输入字符串pattern

axis 表示作用的轴

补充:python-pandas如何选取满足条件的特定的行和列

我就废话不多说了,大家还是直接看代码吧~

import pandas as pd

df1 = pd.read_csv("data/trans/bike_flow.csv")

# ['t_idx' 'r_idx' 'c_idx' 'bike_out_cnt' 'bike_in_cnt' 'flow_stay' 'flow_in' 'flow_out']

print(df1.columns.values)

# (23016, 8)

print(df1.shape)

# ['t_idx', 'bike_in_cnt']是取特定的列

# df1['bike_in_cnt'] > 10是取特定的行

df2 = df1[['t_idx', 'bike_in_cnt']][df1['bike_in_cnt'] > 10]

# (328, 2)

print(df2.shape)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值