概述
通用图像分类公开的标准数据集常用的有CIFAR、ImageNet、COCO等,常用的细粒度图像分类数据集包括CUB-200-2011、Stanford Dog、Oxford-flowers等。其中ImageNet数据集规模相对较大,大量研究成果基于ImageNet。ImageNet数据从2010年来稍有变化,常用的是ImageNet-2012数据集,该数据集包含1000个类别:训练集包含1,281,167张图片,每个类别数据732至1300张不等,验证集包含50,000张图片,平均每个类别50张图片。
由于ImageNet数据集较大,下载和训练较慢,为了方便快速学习图像分类,我们使用CIFAR10数据集。本文讲解如何将数据集反向重建为rgb彩色图片。
cifar10数据集共有60000张彩色图像,图像大小是3通道的32*32,分为10个类,每类6000张图。这里面有50000张用于训练,构成了5个训练批,每一批10000张图;另外10000用于测试,单独构成一批。测试批的数据里,取自10类中的每一类,每一类随机取1000张。抽剩下的就随机排列组成了训练批。注意一个训练批中的各类图像并不一定数量相同,总的来看训练批,每一类都有5000张图。
数据的下载:共有三个版本:
python: http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
MATLAB: http://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz
bin: http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz
下图是从每个类别中随机抽取了10张图片,展示了所有的类别。

本文介绍了CIFAR10数据集的基本信息,包括其图像尺寸、类别分布和数据下载选项。通过Python解析CIFAR10的pickle格式数据,将像素数据转换为RGB图片并保存。提供了读取和重建图片的完整代码示例。
最低0.47元/天 解锁文章
4624

被折叠的 条评论
为什么被折叠?



