可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)是一种用于模式识别和机器学习中的降维技术
,尤其适用于处理具有复杂结构
和非线性关系
的数据集。
DLPA结合了局部投影
的思想和鉴别分析
的目标,旨在保留数据的局部几何结构的同时,增强不同类别的可分性。
DLPA的核心思想
DLPA试图找到一个投影,使数据在低维空间中既
保持局部结构的连贯性,又能
最大程度地分离不同类别的数据。
它通常被视为局部保持投影
(Locally Preserving Projections, LPP)和线性鉴别分析
(Linear Discriminant Analysis, LDA)的结合体。
公式和解释
DLPA的公式主要围绕构建一个最优投影矩阵
,该矩阵通过最大化
类间
差异和最小化类内
差异来定义。DLPA的目标函数可以表达为:
其中:
是
类间
散度矩阵,代表不同类别
中心之间的差异;是
类内
散度矩阵,代表同一类别
内部的差异;是
投影矩阵
,它将高维数据映射到低维空间;
是矩阵的
迹
,即对角线元素之和。
类内散度矩阵 
类内
散度矩阵 描述了
同一类别
内部样本的分布情况,我们希望这个矩阵越小越好
,意味着同一类内的样本点在投影后的空间中更加聚集。
是
类别数
;是第
类的
所有样本组成的集合;
是属于第
类的
样本
;是第
类的
样本均值向量。
类间散度矩阵 
类间散度矩阵
是第
类的
样本数;
是第
类的
样本均值向量。
是
所有样本的总均值向量。
DLPA的优化
DLPA的优化目标是找到一个 ,它能够最大化
类间
差异和最小化类内
差异。这通常通过求解广义特征值问题来实现:
其中 是广义特征值。为了保证投影方向的
最优性和正交性
,我们会选择前 个最大的特征值对应的
特征向量
作为投影矩阵 的
列向量
,其中 是我们
希望降维到的维度。
小结
DLPA是一种有效的降维方法,尤其适用于非线性数据集的分类
任务。通过优化类内和类间散度矩阵的比例
,DLPA能够找到一个既能保持
数据局部结构,又能增强
不同类别可分性的低维表示。
这种技术在处理诸如人脸识别、文本分类和生物信息学等领域的问题时特别有用。