可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)是一种用于模式识别和机器学习中的降维技术,尤其适用于处理具有复杂结构非线性关系的数据集。

DLPA结合了局部投影的思想和鉴别分析的目标,旨在保留数据的局部几何结构的同时,增强不同类别的可分性。

DLPA的核心思想

DLPA试图找到一个投影,使数据在低维空间中保持局部结构的连贯性,又能最大程度地分离不同类别的数据。
它通常被视为局部保持投影(Locally Preserving Projections, LPP)和线性鉴别分析(Linear Discriminant Analysis, LDA)的结合体。

公式和解释

DLPA的公式主要围绕构建一个最优投影矩阵 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_投影矩阵,该矩阵通过最大化类间差异和最小化类内差异来定义。DLPA的目标函数可以表达为:

经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_特征值_02

其中:

  • 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_投影矩阵_03类间散度矩阵,代表不同类别中心之间的差异;
  • 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_学习方法_04类内散度矩阵,代表同一类别内部的差异;
  • 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_学习_05投影矩阵,它将高维数据映射到低维空间;
  • 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_学习_06 是矩阵的,即对角线元素之和。
类内散度矩阵 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_投影矩阵_07

类内散度矩阵 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_投影矩阵_07 描述了同一类别内部样本的分布情况,我们希望这个矩阵越小越好,意味着同一类内的样本点在投影后的空间中更加聚集。

经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_投影矩阵_09

  • 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_特征值_10类别数
  • 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_投影矩阵_11 是第 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_数据_12 类的所有样本组成的集合;
  • 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_学习_13 是属于第 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_数据_12 类的样本
  • 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_学习_15 是第 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_数据_12 类的样本均值向量。
类间散度矩阵 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_特征值_17

类间散度矩阵 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_特征值_17

经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_数据_19

  • 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_学习_20 是第 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_数据_12 类的样本数;
  • 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_学习_15 是第 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_数据_12 类的样本均值向量。
  • 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_投影矩阵_24所有样本的总均值向量。
DLPA的优化

DLPA的优化目标是找到一个 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_投影矩阵,它能够最大化类间差异和最小化类内差异。这通常通过求解广义特征值问题来实现:

经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_特征值_26

其中 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_投影矩阵_27 是广义特征值。为了保证投影方向的最优性和正交性,我们会选择前 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_特征值_28 个最大的特征值对应的特征向量作为投影矩阵 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_投影矩阵列向量,其中 经典子空间学习的多视图学习方法——可鉴别的局部投影(Discriminant Locally Projective Analysis,DLPA)_特征值_28 是我们希望降维到的维度。

小结

DLPA是一种有效的降维方法,尤其适用于非线性数据集的分类任务。通过优化类内和类间散度矩阵的比例,DLPA能够找到一个既能保持数据局部结构,又能增强不同类别可分性的低维表示。

这种技术在处理诸如人脸识别、文本分类和生物信息学等领域的问题时特别有用。