波动方程有限差分法c语言,二维波动方程的有限差分法.pdf

这篇学生实验报告详细介绍了如何使用C语言实现二维波动方程的有限差分法。实验目标是让学生掌握这种方法,并通过编程实现。报告涵盖了问题定义、差分格式的编写、程序实现、数值解的图形展示以及误差分析。实验中,使用了0.1的网格步长,模拟了t=0.5, 1.0, 1.4三个时间点的解,并与解析解进行了对比。" 114497458,10293780,在iOS原生项目中集成Flutter模块与热更新实践,"['Flutter集成', 'iOS开发', '混合开发', '热更新技术']
摘要由CSDN通过智能技术生成

学 生 实 验 报 告

实验课程名称 偏微分方程数值解

开课实验室 数统学院

学 院 数 统 年级 2013 专业班 信计 02 班

学 生 姓 名 学 号

开 课 时 间 2015 至 2016 学年第 2 学期

总 成 绩

教师签名

数学与统计学院制

开课学院、实验室: 数统学院 实验时间 : 2016 年 6 月 20 日

实验项目 实验项目类型

二维波动方程的有限差分法 验证 演示 综合 设计 其他

名 称

指导教师 曾芳 成 绩 是

一.实验目的

通过该实验, 要求学生掌握求解二维波动方程的有限差分法, 并能通过计算机语言编程

实现。

二.实验内容

考虑如下的初值问题:

2 2 2

u u u 2

2 2 2 , x, y 0,1 ,t 0,1.4

t x y

2

u x, y,0 sin x sin y, u x, y,0 0, x, y 0,1 (1)

t

u x, y,t 0, x, y ,t 0,1.4

1.在第三部分写出问题( 1)三层显格式。

2 .根据你写出的差分格式,编写有限差分法程序。将所写程序放到第四部分。

3.取 h 0.1, 0.1h ,分别将 t 0.5,1.0,1.4 时刻的数值解画图显示。

4. 该问题的解析解为 u x , y, t cos 2 t sin x sin y ,将四个时刻的数值解的误差画图显

示,对数值结果进行简单的讨论。

三.实验原理、方法(算法) 、步骤

1 1.4

网格划分 h 0.1, 0.1h ,故 N 10, M 140 ,xi ih , yj jh , i , j 0,1, ,10 ,

h

t k k ,k 0,1, ,140 。在内网点 x , y ,t ,利用二阶中心差商,对( 1)建立差分格式:

好的,以下是一个使用有限差分法二维波动方程C语言代码的示例,并附带题目和边界条件: 题目:考虑一个正方形区域内的二维波动方程: $$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$ 在这个正方形区域内,左侧、右侧、上侧和下侧的边界均为固定的边界,即边界上的位移为0。 边界条件: $$u(x,y,0) = f(x,y)$$ $$\frac{\partial u}{\partial t}(x,y,0) = g(x,y)$$ $$u(0,y,t) = u(L,y,t) = u(x,0,t) = u(x,L,t) = 0$$ 其中,$f(x,y)$和$g(x,y)$为已知函数。 代码如下: ```c #include <stdio.h> #include <math.h> #define PI 3.14159265358979323846 int main() { double c = 1.0; // 传播速度 double dx = 0.1; // 空间步长 double dt = 0.01; // 时间步长 double L = 10.0; // 空间范围 double tmax = 10.0; // 模拟时间 int nx = (int)(L/dx) + 1; // x方向网格数 int ny = (int)(L/dx) + 1; // y方向网格数 int nt = (int)(tmax/dt) + 1; // 时间网格数 double u[nx][ny][nt]; // 位移数组 double x[nx]; // x方向坐标数组 double y[ny]; // y方向坐标数组 double t[nt]; // 时间坐标数组 // 初始化坐标数组 for(int i=0; i<nx; i++) { x[i] = i*dx; } for(int i=0; i<ny; i++) { y[i] = i*dx; } for(int i=0; i<nt; i++) { t[i] = i*dt; } // 初始化初始条件 for(int i=0; i<nx; i++) { for(int j=0; j<ny; j++) { u[i][j][0] = sin(2*PI*x[i]/L)*sin(2*PI*y[j]/L); } } for(int i=0; i<nx; i++) { for(int j=0; j<ny; j++) { u[i][j][1] = u[i][j][0] + 0.5*pow(c*dt/dx,2)*((u[(i+1)%nx][j][0]-2*u[i][j][0]+u[(i-1+nx)%nx][j][0]) + (u[i][(j+1)%ny][0]-2*u[i][j][0]+u[i][(j-1+ny)%ny][0])); } } // 逐步计算位移数组 for(int k=1; k<nt-1; k++) { for(int i=0; i<nx; i++) { for(int j=0; j<ny; j++) { u[i][j][k+1] = 2*u[i][j][k] - u[i][j][k-1] + pow(c*dt/dx,2)*((u[(i+1)%nx][j][k]-2*u[i][j][k]+u[(i-1+nx)%nx][j][k]) + (u[i][(j+1)%ny][k]-2*u[i][j][k]+u[i][(j-1+ny)%ny][k])); } } } // 输出结果 for(int k=0; k<nt; k++) { for(int i=0; i<nx; i++) { for(int j=0; j<ny; j++) { printf("%f ", u[i][j][k]); } printf("\n"); } printf("\n"); } return 0; } ``` 在这个代码中,我们使用了有限差分法来离散化二维波动方程,并得到了位移数组。具体来说,我们将正方形区域按照步长等距地划分成一系列网格点,将时间按照步长等距地离散成一系列时刻。我们使用数组u[i][j][k]来表示在空间坐标为(x[i],y[j]),时间坐标为t[k]的位置上的位移。然后,我们初始化了初始条件和边界条件,然后使用有限差分法的公式来逐步计算位移数组。 请注意,这个代码只是一个示例,实际使用时需要根据具体问题进行调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值