php开发工具ps,小蚂蚁学习PS切图之基础操作(2)——工具栏的介绍

工具栏的介绍

套索工具:如果套索工具不闭合,双击可以自动闭合。

磁性套锁工具:在很尖锐的区域会出现不足,可以使用多边形套索工具,增加选区弥补。

快速选择工具:选区之间可以拖动以扩大选区。左括号:缩小;右括号:放大。在属性栏也有响应的设置。

魔棒工具:快捷键W,和快速选择一样,可以拖动扩大选区。

裁剪工具:裁出所需的一部分。小技巧:先去右侧的图层,选择该图层,形成一个选区之后,点击裁剪工具,按回车,这样可以达到事半功倍的效果。当选择一个不规则的选区,单击裁剪,会选出一个最小包含全部像素的区域,非常实用。 技巧2:裁剪完成之后,可以在图层之中进行隐藏等操作,拿出我们需要的图层内容。

污点修复画笔工具:选择附近的颜色进行填充。

修复画笔工具:先按alt键取材,进行复制,但会根据周围颜色进行一个羽化。

修补工具:圈住之后,鼠标拖拉,会根据周围颜色将放开鼠标区域进行一个复制。

画笔工具:默认为柔和的边缘,也可以去属性栏,进行设置其硬度。

铅笔工具:和画笔差不多,但是画出的线条不一样。

仿制图章工具:和创可贴工具效果相似,但是图章工具会复制出来一个一模一样的。

图案图章工具:不太常用,有需要的时候偶尔使用一下。

历史记录画笔工具:比如一个人的脸,滤镜--模糊--高斯模糊 模糊到看不到黑点为止,设置一个历史记录画笔工具,在返回原图,使用历史记录画笔工具进行修复。

橡皮擦:顾名思义,消除的作用。

渐变工具:属性栏可以设置多种形式的渐变。

模糊工具、锐化工具、涂抹工具:多用于照片处理。

海绵工具:作用相当于颜料洒在画布上,用海绵吸了一下的感觉。

钢笔工具:可以画出曲线,使用非常灵活,属性栏中,使用比较多的还是路径。

字体工具:对字体进行设置,结合钢笔画出的波浪线,文字也可以呈现出波浪状。

路径选择工具:对位置进行改变。直接选择工具:对形状进行改变。

矩形工具:可以画出规则图形。

抓手工具:快捷键,空格。

放大镜:放大ctrl+“+”;缩小ctrl+“—”

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值