超级计算机 求导,错题总结:明确求导过程中的自变量很关键

例题:对下面的函数求导

f(x) = \sqrt{1+x} + \sqrt{1-x} - 2

错误的求导过程

{f}'(x) = {(\sqrt{1 + x})}' + {(\sqrt{1 - x})}' + {2}'={((1 + x)^{\frac{1}{2}})}' + {((1 - x)^{\frac{1}{2}})}'=\frac{1}{2} \frac{1}{\sqrt{1+x}} + \frac{1}{2} \frac{1}{\sqrt{1-x}}=\frac{1}{2 \sqrt{1+x}} + \frac{1}{2 \sqrt{1-x}}

上面这个计算过程是错的,错误的原因是在计算 \sqrt{1+x} 的导数时把 1+x 视作了自变量,也就是说把 1+x 视作了求导对象;而在对 \sqrt{1-x} 求导时,又把 1-x 看作了求导自变量。

很显然,一个二维函数中不可能有两个不同的自变量,而且根据约定可知,当式子中出现 f(x) 或者 lim_{x \to 0} 时,就表明这个式子中的自变量是 x 且求导也要对 x 求导。

正确的求导过程

这里我们可以使用复合函数求导的链式法则计算本例题,复合函数的链式求导法则如下:

设 y = f(u), u = \mu(x), 如果 \mu(x) 在 x 处可导,f(x) 在对应点 u 处可导,则复合函数 y = f[\mu(x)] 在 x 处可导,且有:

\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = {f}'[\mu(x)]{\mu}'(x)

于是,对于例题的正确求导过程如下:

{f}'(x) = {(\sqrt{1 + x})}' + {(\sqrt{1 - x})}' + {2}'={((1 + x)^{\frac{1}{2}})}' + {((1 - x)^{\frac{1}{2}})}'=\frac{1}{2}(1 + x)^{-\frac{1}{2}} + \frac{1}{2}(1 - x)^{-\frac{1}{2}}

=\frac{1}{2}(1 + x)^{-\frac{1}{2}}\times{(x)}' + \frac{1}{2}(1 - x)^{-\frac{1}{2}} \times {(-x)}'=\frac{1}{2\sqrt{1+x}} - \frac{1}{2 \sqrt{1-x}}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值