二分检索用途及复杂性_二分查找和斐波那契查找

二分查找

说明:查找的数组或列表必须是有序的,若无序,先进行排序

复杂度:时间复杂度 O(log2n),空间复杂度O(n)

C++源码(递归和非递归两个版本)

#include

using namespace std;

int a[] = { 1, 2, 3, 4, 5, 6, 8 };

int BinarySearch1(int l, int r, int value)

{

int mid = (l + r) / 2;

if (l == r && a[l] != value)

return -1;

if (a[mid] == value)

return mid;

if (a[mid] > value)

return BinarySearch1(l, mid - 1, value);

else

return BinarySearch1(mid + 1, r, value);

}

int BinarySearch2(int value){

int l = 0;

int r = sizeof(a) / sizeof(a[0]) - 1;

while (l <= r){

int mid = (l + r) / 2;

if (a[mid] == value)

return (l + r) / 2;

if (a[mid] > value)

r = mid - 1;

else

l = mid + 1;

}

return -1;

}

int main(void)

{

cout << "Binary Search (recursive) result: " << BinarySearch1(0, sizeof(a) / sizeof(a[0]) - 1, 5) << endl;;

cout << "Binary Search (no recursive) result: " << BinarySearch2(4) << endl;

}

斐波那契查找

在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割。

黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。

0.618被公认为最具有审美意义的比例数字,这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。因此被称为黄金分割。

大家记不记得斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….(从第三个数开始,后边每一个数都是前两个数的和)。然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。

e43ff75a00d04754d804c63c1da9e7ff.png

基本思想:也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。

相对于折半查找,一般将待比较的key值与第mid=(low+high)/2位置的元素比较,比较结果分三种情况:

1)相等,mid位置的元素即为所求

2)>,low=mid+1;

3)

斐波那契查找与折半查找很相似,他是根据斐波那契序列的特点对有序表进行分割的。他要求开始表中记录的个数为某个斐波那契数小1,及n=F(k)-1;

开始将k值与第F(k-1)位置的记录进行比较(及mid=low+F(k-1)-1),比较结果也分为三种

1)相等,mid位置的元素即为所求

2)>,low=mid+1,k-=2;

说明:low=mid+1说明待查找的元素在[mid+1,high]范围内,k-=2 说明范围[mid+1,high]内的元素个数为n-(F(k-1))= Fk-1-F(k-1)=Fk-F(k-1)-1=F(k-2)-1个,所以可以递归的应用斐波那契查找。

3)

说明:low=mid+1说明待查找的元素在[low,mid-1]范围内,k-=1 说明范围[low,mid-1]内的元素个数为F(k-1)-1个,所以可以递归 的应用斐波那契查找。

复杂度分析:最坏情况下,时间复杂度为O(log2n),且其期望复杂度也为O(log2n)。

#include

#include

using namespace std;

const int MAX_SIZE = 20;

int a[] = { 1, 5, 15, 22, 25, 31, 39, 42, 47, 49, 59, 68, 88 };

void Fibonacci(int F[])

{

F[0] = 0;

F[1] = 1;

for (size_t i = 2; i < MAX_SIZE; i++)

F[i] = F[i - 1] + F[i - 2];

}

int FibonacciSearch(int value)

{

int F[MAX_SIZE];

Fibonacci(F);

int n = sizeof(a) / sizeof(int);

int k = 0;

while (n > F[k] - 1)

k++;

vector temp;

temp.assign(a, a + n);

for (size_t i = n; i < F[k] - 1; i++)

temp.push_back(a[n - 1]);

int l = 0, r = n - 1;

while (l <= r)

{

int mid = l + F[k - 1] - 1;

if (temp[mid] < value){

l = mid + 1;

k = k - 2;

}

else if (temp[mid] > value){

r = mid - 1;

k = k - 1;

}

else{

if (mid < n)

return mid;

else

return n - 1;

}

}

return -1;

}

int main()

{

int index = FibonacciSearch(88);

cout << index << endl;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值