大学计算机概率,上海大学 计算机 概率论与数理统计a .pptx

第二章 随机变量及其分布;随机变量作为一个定义样本空间S上的函数具有如下特征:(1)任何一个随机事件A都可以用随机变量来表示。 如:{X=c}就是一个随机事件.(2)由于随机事件 的发生是不确定的,所以随机 变量的取值也是不确定的, 它以某一概率取某一值。如:P{X=c}=p. 引入了随机变量后,我们就能用随机变量来描述各种随机现象,这样就能用微积分的方法来研究随机现象的统计规律。 ;在实际问题中, 常常要求这样一类随机事件 , 或 的概率。即求 。 ;二、分布函数的性质;§2 离散型随机变量及其分布律; 由概率的定义, 满足如下性质: (1) ; (2) 。 ;;二、常见的离散型随机变量及其分布律 ;;在 重伯努利试验中,事件 发生的概率为 ,

以 表示 重伯努利试验中 发生的次数,则

称 服从参数为 , 的二项分布。其分布律为 ;3、泊松(Possion)分布 ;5、巴斯卡分布;例:一名射手每次射击命中的概率为2%,现独立地射击 400次,求至少有2次射中的概率。

例:某门课程考试中有10道选择题(四选一),某学生随机选一个作为答案,求:该学生能选对5道题的概率。

例:有同类型的机器300台,各台机器工作相互独立,每台机器在任何时间发生故障的概率都是1%,现需配备若干维修工,如果一台机器的故障可由一个工人处理,问:至少要多少维修工,才能使机器有故障而不能及时修理的概率不超过1%?又若现在实行包干,用10个人,每人负责30台,问:机器有故障而不能及时修理的概率为多少?;例1 : 某流水生产线上每个产品不合格的概率为 ,各产品合格与否相互独立,当出现一个不合格产品时即停机检修。设开机后第一次停机时已生产的产品个数为 ,则 服从什么分布?;7、超几何分布;三、 举例;例2: 已知离散型随机变量 的分布函数为:;;例:一个半径为2的圆形靶,每次射击都能中靶,击中某一点的 概率与这一点所确定的圆盘面积成正比,X表示击中点与圆心的距离,求X的分布函数。

连续型随机变量的分布函数F(x)是连续的,且F(x)可以写成某个函数 f ( t ) 的上限变量的积分形式。而离散型随机变量的分布函数F(x)是右连续的。这是两类随机变量的分布函数的重要区别。;§4 连续型随机变量及其概率密度 ;三、概率密度函数 的性质;;三、几种常见的连续型随机变量 ;;;3、 正态分布 ;;;;;;;;;;;;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值