自己收集整理的
错误在所难免
仅供参考交流
如有错误
请指正!谢谢
人教版八年级第十三章《实数》教材分析及教学建议
广州市陈嘉庚纪念中学 胡妙婵
一、本章知识概述
本章在初中数学教材中占有重要的地位
将会为学习二次根式、一元二次方程、函数等奠定基础.关于数的内容
初中阶段主要学习有理数和实数.对于有理数和实数
初中阶段教科书安排了3章内容
分别是7年级上册第1章"有理数"
八年级上册第13章"实数"和9年级上册第21章"二次根式".本章是在有理数的基础上认识实数
对于实数的学习
除本章外
还要在"二次根式"一章中通过研究二次根式的运算
进一步认识实数的运算.本章主要内容包括算术平方根、平方根、立方根以及实数的有关概念和运算.
二、本章知识的重难点
重点:算术平方根和平方根的概念和求法.
难点:平方根、和实数的概念及运用实数解决问题.
三、课程学习目标
1.了解算术平方根、平方根、立方根的概念
会用根号表示数的平方根、立方根;
2.了解开方与乘方互为逆运算
会用平方运算求某些非负数的平方根
会用立方运算求某些数的立方根
会用计算器求平方根和立方根;
3.了解无理数和实数的概念
知道实数与数轴上的点一一对应
有序实数对与平面上的点一一对应;了解数的范围由有理数扩大到实数后
一些概念、运算等的一致性及其发展变化;
4.能用有理数估计一个无理数的大致范围.
四、教材分析与教学建议
§13.1平方根
【教学目标】
1.了解一个数的平方根和算术平方根的意义
理解和掌握平方根的性质.
2.会求一个非负数的平方根、算术平方根.
3.会用科学计算器求一个非负数的算术平方根.
4.能用有理数估计一个无理数的大致范围.
【教学重点】算术平方根的概念及表示方法.
【教学难点】平方根的概念.
【教学建议】
1. 本节先研究算术平方根
再研究平方根. 教科书首先创设一个问题情景
抽象出这个情景中的数学问题
即已知正方形的面积求边长的问题
这是一个典型的求算术平方根的问题
这与学生以前熟悉的已知边长求面积是一个互逆的过程.通过对这类问题的探讨
引出算术平方根
给出算术平方根的概念和它的符号表示
算术平方根的概念学习应充分联系实际引入和引导理解
忌强背概念.
例如:(引入新课)利用课本的导入:请同学们欣赏本节导图
并回答问题
学校要举行金秋美术作品比赛
小欧很高兴
他想裁出一块面积为25dm2的正方形画布
画上自己的得意之作参加