计算机科学先修课要求
由于计算机科学的热度居高不下,很多专业的申请者会考虑转专业申请。尽管计算机科学项目欢迎工科等不同背景的申请者,建议申请者尽可能多修相关课程,以提高自己的竞争优势。
结合以下院校对先修课的要求,计算机科学的先修课可以概括为以下几类:
数学
Linear Algebra
Calculus I, II
Probability and Statistics
Linear Differential Equations
Numerical Analysis
Fourier Analysis
Discrete Mathematics
计算机
Introduction to Programming
Problem Solving & Programming
Computer Architecture
Data Structures (Arrays, Lists, Pointers)
Principles of Computer Systems或者Operating Systems
Algorithms
Introduction to Discrete Structures
Machine Structures
Programming Language: JAVA, Matlab, Python, C/C++Introduction to Computation
Software
Windows, MacOS, Linux
具体院校选修课要求——卡耐基梅隆大学
Master of Science in Computer Vision
Mathematics
Linear Algebra (Inversion, Eigen Decomposition, Null Space)
Linear Differential Equations (Matrix Algebra, Matrix manipulation)
Calculus (Derivatives, Gradients, Chain Rule)
Probability and Statistics
Numerical Integration
Fourier Analysis
Optimization (convex optimization, Levenberg-Marquardt, sparse optimization)
Programming knowledge
Data structures
C/C++, JAVA, Matlab, Python
OpenCV, VLfeat, Matlab Image processing toolbox
GPU (CUDA, OpenCL)
Software
Productivity software (MS office, iWork, OpenOffice)
Windows, MacOS, Linux
LaTeX
Photoshop (or equivalent)
Master of Science in Robotics
Prerequisites
It is each student’s personal responsibility to arrive with, or to acquire rapidly thereafter, basic understanding (at the level of an introductory undergraduate course) in the following areas:
·Mathematics: calculus, linear algebra, numerical analysis, probability and statistics
·Computer Science: programming, data structures, algorithms
·Physics and Engineering: mechanics, dynamics, electricity and magnetism, optics
Master of Science in Machine Learning
Incoming students must have a strong background in computer science, including a solid understanding of complexity theory and good programming skills, as well as a good background in mathematics. Specifically, the first-year courses assume at least one year of college-level probability and statistics, as well as matrix algebra and multivariate calculus.
For our introductory ML course, there's a self-assessment test [PDF]http://liuxue.xdf.cn/which will give you some idea about the background we expect students to have (for the MS you're looking at the "modest requirements"). Generally, you need to have some reasonable programming skills, with experience inMatlab/R/scipy-numpyespecially helpful, andJavaandPythonbeing more useful than C, and a solid math background, especially inprobability/statistics, linear algebra, and matrix and tensor calculus.
Master of Science in Computer Science
We cater to students withbasic analytic skillsanda strong aptitude for mathematics, programming, and logical reasoning. You don’t need a bachelor’s degree in computer science specifically for the program, but a technical undergraduate background will set you up for success.
Master of Science in Robotic Systems Development
Recommended Skills for MRSD
PROGRAMMING
Matlab
Familiarity with command-line and external functions using MATLAB library; Import/export of data; graphing/plotting functions & data; rudimentary animation
Python
And / or C / C++ familiarity
ROS
Robot Operating System (ROS) - Optional (Good to know)
Program Constructs
Sequencing, Selection, Iteration & Recursion
Data Organization
Arrays, Lists, Pointers
COMPUTERS
Tools
Productivity SW (MS Office - Excel / Word / PowerPoint / Project)
Operating Systems
Windows or Apple-OS - use of personal laptop computer Linux or Ubuntu
MATHEMATICS
Linear Algebra
Inversion, Eigenvalues, Null-Space
Linear Differential Eq.
Matrix-Algebra & -Manipulation
Basic Calculus
Derivatives, Gradients, Chain Rule
Numerical Integration
Basic Computational Implementation, e.g. Runge-Kutta 4
Fourier Analysis
NOT how to calculate the coefficients, but the notion that any complicated fct. can be represented as a composite of simpler ones
CMU Math Fundamentals Course
16-811: Math Fundamentals for Robotics
PHYSICS
Newtonian Physics
Newton-Euler Mechanics (Forces, torques, mass / inertia, Equations of motion)
System State
Degrees of Freedom & Constraints to fully describe a system’s behavior mathematically
CONTROLS
Control Systems
Controls Fundamentals (transfer functions; bode plots; stability-margin; time-response of LTI systems; PID compensators)
OTHER
Electronics
Basic experience with practical circuits (elements, interactions, PCBs)
Mechanisms
Some design and fabrication experience (Concept -> CAD -> Fabrication)
Documentation
Basic skills in document structuring and technical writing
REFERENCES
Courses - College-Level
CMU: CS Courses 15-110 and / or 15-112 OR equivalentHIGHLY recommend being comfortable with material in 16-811
Courses - Online
Stanford - CS-101MIT - Code AcademyCourseraUdacity - . . . choose cs101 or cs373
Books
Linear Algebra: A Modern Introduction - David PoolePhysics - Jay OrearControl Systems Engineering - Norman NiseThe C Programming Language - Kernighan & RitchieThe C Programmers Handbook - Thom HoganProgramming in C - S. Kochan
Online Tutorials and Learning Resources
MATLABPythonLynda - assorted trainings - available with CMU ID
1289

被折叠的 条评论
为什么被折叠?



