新南威语言班C加,【干货来了】新南威尔士大学UEEC语言班 你了解多少?

本文由在UNSW读新闻的Lily分享,详细解析了新南威尔士大学UEEC语言班的课程结构,重点强调了写作部分的重要性,并提供了Argument、Discussion和Problem-solution三种写作类型的框架模板,还推荐了学术写作资源和听力练习材料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:此文章转自目前在UNSW大学读新闻的Lily妹纸的语言学习经验+总结。Lily妹纸在正式进入UNSW大学之前在新南威尔士的语言班学习,并顺利通过学校的考试后进入到硕士课程。

干货分享

首先,解释一下新南威尔士大学的UEEC的课程:

语言班考试写作百分比解析

(1)出勤率+Independent Learning(就是交作业情况)这两个各占5%

(2)期中考试10%内容就是听读写

(3)写作考试1 10%

(4) Group Discussion(老师在班内给你随机组队,和这几个小伙伴围绕一个话题进行讨论,有5个备选话题) 5%

(5) Presentation(topic要和自己的专业领域相关) 15%

(6)写作考试2 20%。

(7)期末考试(听读写) 35%

以上不难看出写作占的比重很大

也因此它就成了小伙伴们较担心的部分!

2.三种写作结构解析

UEEC写作和雅思写作有很大的不同。相信同学都是看过无数遍雅思作文的,想摒弃雅思句型和模式有一定的难度。但是 with the development of的句型就不要再用了,估计老师都看够了吧。

期中期末的写作虽只有短短300字,但是麻雀虽小五脏俱全。

UEEC的写作有两种类型argument和discussion。有大神学姐总结了两种类型的框架,小伙伴们可以参考哟!

Argument  essay:

第一段大概4-5句

Background

Issue

Thesis statement

Outline

第二段

Idea 1(argum

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值