协同过滤算法UserCF和ItemCF优缺点对比

转载原文链接:协同过滤算法UserCF和ItemCF优缺点对比

UserCF:

  1. 性能:适用于用户较少的场合,如果用户很多,计算用户相似度矩阵代价很大。
  2. 领域:时效性较强,用户个性化兴趣不太明显的领域。
  3. 实时性:用户有新行为,不一定造成推荐结果的立即变化。
  4. 冷启动:
    1. 在新用户对很少的物品产生行为后,不能立即对它进行个性化推荐,因为用户相似度表示每隔一段时间离线计算的。
    2. 新物品上线后一段时间,一旦有用户对物品产生行为,就可以将新物品推荐给和对它产生行为的用户兴趣相似的其他用户。
  5. 推荐理由:很难提供令用户信服的推荐解释。

ItemCF:

  1. 性能:适用于物品数明显小于用户数的场合,如果物品很多,计算物品的相似度矩阵代价很大。
  2. 领域:长尾物品丰富,用户个性化需求强烈的领域。
  3. 实时性:用户有新行为,一定会导致推荐结果的实时变化。
  4. 冷启动:
    1. 新用户只要对一个物品产生行为,就可以给它推荐和该物品相关的其它物品。
    2. 但没有办法在不离线更新物品相似度表的情况下将新的物品推荐给用户。
  5. 推荐理由:利用用户的历史行为给用户做推荐解释,可以令用户比较信服。

推荐结果多样性
在实际运用中,推荐结果的多样性对用户体验有很大的影响。试想,一个用户就因为是周杰伦的粉丝,于是系统就给他推荐满屏有关周杰伦的新闻,这样的推荐系统无疑是失败的(即使它精确地捕捉到该用户是周杰伦的粉丝这一点)。因此,在设计推荐系统时必须考虑推荐结果的多样性。简单分析不难发现,item-based方法推荐结果的多样性不如user-based。item-based方法推荐的是自己历史喜欢的物品的近邻物品,也就是说,被推荐的物品永远都围绕自己的历史兴趣产生,不可能推荐与自己历史兴趣不太相关的物品。而user-based方法推荐的是自己近邻用户喜欢的物品,其它用户是自己的近邻用户,只能说明我们之间曾经共同喜欢过很多物品,对方仍然喜欢很多物品与我的历史兴趣无关,它们是隐藏在我内心深处而未表现出来的的兴趣,这些物品将会被user-based协同过滤算法推荐给我。

系统覆盖率
推荐系统的覆盖率是指系统中有多少物品可能被推荐。对于推荐系统的运营方而言,当然希望系统中的所有物品都有可能被推荐系统推荐给用户。分析发现,user-based推荐的产品多集中在热门产品里面,而item-based方法更善于推荐长尾的产品。因此,item-based推荐方法的整体覆盖率要高于user-based。
推荐精度
user-based和item-based两种协同过滤方法的精度类似。统计发现,二者推荐的内容之间存在50%的相似度,另外50%的内容各自有各自的特点。因此,通常将两个方法混用,使其互补。

用户对推荐算法的适应度
假设用户有明确的兴趣(它的历史记录聚焦在某个兴趣点上),那么,他更适应item-based推荐算法;相反,假设用户没有明确的兴趣,或者兴趣比较分散,但是该用户有很多好友,或者他的近邻用户分散比较密切,则更适应user-based推荐算法。=

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值