php最小二乘法曲线拟合,最小二乘法与最小二乘支持向量回归的优劣

这是两种解线性模型$X^Tw=y$的回归方法,其中$X$是 $d$x$n$的$d$维$n$个列向量输入数据,$w$是$d$x$1$参数,$y$是输出。最小二乘LS是以随机变量($X$中的行)为计算相关性的单位;最小二乘支持向量回归LS_SVR是以数据点($X$中的列)为计算相似性的单位,类似kNN,以数据点间的距离的估计为基础。回归都是求条件期望(conditional mean),LS是以输入随机变量为条件,并学习输入随机变量到输出随机变量的模型;LS_SVR是以测试点离训练点的距离矩阵为条件,并学习这个距离矩阵到输出的映射。

1.公式:

LS:$\hat{y}=X_{new}^Tw=X_{new}^T(XX^T)^{-1}XY$,这里$\text{Cov}(X,X)=XX^T$衡量的是输入随机变量的相关性,$\text{Cov}(X,Y)=XY^T$衡量的是输入与输出随机变量的相关性。

LS_SVR: $\hat{y}=X_{new}^Tw=X_{new}^TX\alpha=X_{new}^TX(X^TX+1/\gamma I)^{-1}Y$,其中$w=X\alpha$认为参数$w$是输出数据$X$的加权平均,$\alpha$是每个点的重要性,$\alpha$大的点为support vector。应用kernel后变为$\hat{y}=K(X_{new},X)(\Omega +1/\gamma I)^{-1}Y$。$K(X_{new},X)$ 衡量测试与训练数据点的距离,$\Omega $是训练数据点的距离矩阵,$1/\gamma I$是正则项,让$\Omega +1/\gamma I$可逆。

2.优缺点:

LS优点是在$n>d$时,$(XX^T)^{-1}$计算量要远小于$(\Omega +1/\gamma I)^{-1}$;可直接得到$w$,解释性好;在测试点周围没有训练点时,做extrapolation。

LS缺点是要求所有训练数据点的随机变量要服从相同分布,而且要求测试和训练的随机变量要同分布。也就是说数据要分布一致,不能是mixture之类的数据。所以LS只能处理简单的数据。LS也不容易过拟合。

LS_SVR优点是可以用kernel代替计算高维上的距离;可处理mixture类的复杂数据。

LS_SVR缺点是训练计算量大;距离矩阵不稀疏;要求测试点周围有训练点,只能做interpolation;当使用kernel后不能显性求$w$,可解释性差;较容易过拟合(比如用RBF且半径设的很小)。

可看到除了计算量外,它们优缺点是互补的。如果问题简单,测试和训练数据的随机变量分布一致,用LS。如果测试点周围能找到很多训练点,可用LS_SVR。具体用哪个,主要看对模型估计有信心,还是对距离矩阵向输出的映射的估计有信心。

-----------------------------------

补充一下, 我觉得LS_SVR也有很好的解释性。LS中$w$是输入变量到输出变量的线性映射关系。类同,LS_SVR$\hat{y}=K(X_{new},X)\alpha$,其中$\alpha$是把一个$n$维距离向量到1维输出的线性映射关系。再次反映了LS是基于随机变量,LS_SVR是基于距离。SofaSofa数据科学社区DS面试题库 DS面经

×

Warning

您确定要删除本贴么?所有相关回复也会被一并删除并且无法恢复。

取消

确定删除

1001997.png

Zealing

2018-10-03 14:15

0

十分感谢

- CE_PAUL

2018-10-03 16:03

0

我看过一些书和文献之后也是这样的感觉,LSSVR所谓解释性差都只是集中在“核函数”这一个点而已,其数学逻辑是很清晰的

- CE_PAUL

2018-10-15 14:19

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值