尺规作图的定义:
尺规作图是起源于古希腊的数学课题。只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题。
值得注意的是,以上的“直尺”和“圆规”是抽象意义的,跟现实中的并非完全相同,具体而言,有以下的限制:
尺规作图的方法:
直尺:必须没有刻度,无限长,且只能使用直尺的固定一侧。只可以用它来将两个点连在一起,不可以在上画刻度。
圆规:可以开至无限宽,但上面亦不能有刻度。它只可以拉开成你之前构造过的长度或一个任意的长度。
尺规作图的研究,促成数学上多个领域的发展。好些数学结果就是为解决古希腊三大名题得出的副产品,对尺规作图的探索推动了对圆锥曲线的研究,发现了一批著名的曲线,等等。
若干著名的尺规作图已知是不可能的,而当中很多不可能的例子是利用了19世纪出现的伽罗瓦理论以证明。尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意。
尺规作图的要求:
•它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同:
•直尺必须没有刻度,无限长,且只能使用直尺的固定一侧。只可以用它来将两个点连在一起,不可以在上画刻度。
•圆规可以开至无限宽,但上面亦不能有刻度。它只可以拉开成你之前构造过的长度。
尺规作图的中基本作图:
作一条线段等于已知线段;
作一个角等于已知角;
作线段的垂直平分线;
作已知角的角平分线;
过一点作已知直线的垂线。
还有:
已知一角、一边做等腰三角形
已知两角、一边做三角形
已知一角、两边做三角形
依据公理:
还可以根据已知条件作三角形,一般分为已知三边作三角形,已知两边及夹角作三角形,已知两角及夹边作三角形等,作图的依据是全等三角形的判定定理:SSS,SAS,ASA等。
注意:
保留全部的作图痕迹,包括基本作图的操作程序,只有保留作图痕迹,才能反映出作图的操作是否合理。
尺规作图方法:
任何尺规作图的步骤均可分解为以下五种方法:
·通过两个已知点可作一直线。
·已知圆心和半径可作一个圆。
·若两已知直线相交,可求其交点。
·若已知直线和一已知圆相交,可求其交点。
·若两已知圆相交,可求其交点。
尺规作图的应用:
1、尺规作图做角平分线
设已知角为∠AOB(1)以点O为圆心,以任意长为半径在角的两边画弧,分别交OA、OB于点C、D;(2)再分别以C、D为圆心,以大于线段CD的一半为半径画弧,两弧在∠AOB内交于点E;(3)过点E作射线OE。则OE即为∠AOB的角平分线。
2、用尺规作图过一点作垂线
(1)充分延长给定点所在直线(2)以给定点为圆心,任意长为半径作圆,交直线与两点(3)以此两点为圆心,大于(2)中长为半径分别作圆,两圆交于两点(4)连接此两点即得垂线
3、用尺规作图法做出正五边形
1、已知边长作正五边形的近似画法如下:
(1)作线段AB等于定长l,并分别以A、B为圆心,已知长l为半径画弧与AB的中垂线交于K. (2)以K为圆心,取AB的2/3长度为半径向外侧取C点,使CH=2/3AB
(3)以 C为圆心,已知边长 AB为半径画弧,分别与前两弧相交于M、N.
(4)顺次连接A、B、N、C、M各点即近似作得所要求的正五边形.
2、 圆内接正五边形的画法如下:
(1)以O为圆心,定长R为半径画圆,并作互相垂直的直径MN和 AP.
(2)平分半径ON,得OK=KN.
(3)以 K为圆心,KA为半径画弧与 OM交于 H, AH即为正五边形的边长.
(4)以AH为弦长,在圆周上截得A、B、C、D、E各点,顺次连接这些点即得正五边形。