数学家眼里《周易》
在数学家眼里《周易》可称得上是一道耐人寻味的思考题
有很多数学家受《周易》启发创造了新的理论成果。18世纪初(丨703年)德国数学家莱布尼兹2依据法国传教士带给他的阴阳太极图触发的灵感,研发出了电子计算机的二进制,写出了划时代的论文“谈二进制算术”,并发表在《皇家科学院论文集》上。这标志着电子计算机原理的诞生。这位著名的德国数学家曾经写信给中国当时的皇帝康熙,要求加入中国国籍,而且为了表达他对中国《易经》的敬仰,在法兰克福城创建了一所中国学院,传播中国的传统文化。
诺贝尔物理学奖获得者沃尔夫閃•保利在1950年给荣格写的信中提到,“人们实际上可以把《易经》描述为一本‘流行的数学书我觉得他是真正感受到了《周易》一书的价值所在,不然,他不会有这样的感受。近年来,数学界出现的分数维(分形)理论或研究许多事物“自相似性”的数学理论也可以从《周易》中得到启示,《周易》中就有广义分形。数学中的广义分形,主要的特征是事物各部位之间是相互嵌套的,与太极图中“阴中有阳,阳中有阴”类同。你中有我,我中有你,动中有静,静中有动,两者有异曲同工之妙。撰有《科学无玄的周易》一书的沈宜甲先生对其有较为深刻的阐述。
我在研读《周易》数理过程中,发现它包含着牛顿二项展开式。大家知道,二项展开式是从二项式定理(binomialformula)中得来的。二项式定理是这样表述的:
对于任何两个数A和B以及正整数N总。公式右边的多项式称为二项展开式,又称牛顿二项展开式。
这样的牛顿二项展开式可以在《周易》中找到吗?答案是肯定的。因为在《易•系辞上传》中说:“易有太极,是生两仪,两仪生四象,四象生八卦,八卦定吉凶,吉凶生大业。”这句话的意思是说:“宇宙世界的变化从太极开始,太极衍生出天、地两仪,天地又衍生出春夏秋冬四季,四季又衍生出八卦,八卦又衍生出六十四卦及三百六十四爻,遵从八卦的变化原理,可以感应出吉与凶,再由此,趋吉避凶,就可以成就伟大的事业。”如果我们把以上的易理演算成数学公式,
从以上证明我们可以发现《周易》确实包含着牛顿二项展开式。《周易》为什么会包含牛顿二项展开式?难道就像包含二进制一样是必然吗?难道就是“《易》与天地准,故能弥纶天地之道”?难道《周易》还会包含更多的数理和数学公式吗?