最喜欢的课程的英语作文计算机,我最喜欢的课程 My Favorite Course

It is not easy to choose a favorite class. However, while I find many of my courses interesting, my favorite class is spoken English class. The reason why I like the class are various.

挑选最喜欢的课程并不是件容易的事。然而,我发现很多课程都很有趣,我最喜欢的课是英语口语课。我喜欢这门课的原因是多方面的。

First, unlike other class, spoken English class is free to talk. In the class, we can talk any topic, it is no need to sit silently, the aim of the class is to speak, students are encouraged to give their ideas freely. The students and the teacher give reaction to each other, we will not be sleepy easily.

第一,不想别的课,英语口语课可以自由交谈。课上,我们可以谈论任何话题,没必要安静坐着,这门课的目标就是交流,鼓励学生自由发表他们的意见。学生和老师彼此给予反应,我们不会轻易打瞌睡。

Second, as the class is much free to talk, students won’t feel embarrassed when they are making mistakes. When we are having other class, we need to answer the teachers’ questions, if we give the wrong answer, we will feel dismay, but in the spoken English class is different, the more we say, the better, because practice means perfect, no one will laugh at the mistake.

第二,这门课比较自由交流,因此当学生犯错误的时候,不会感到尴尬。当我们上其他课的时候,需要回答老师的问题,如果我们给出的是错误的答案,会感到灰心丧气,但是在英语口语课上是不同的,我们说的越多,越好,因为练习意味着完美,没有人会取笑你的错误。

I like spoken English class, every time when I have the class, I feel easy and happy to learn. I don’t have pressure to make mistakes, because all of us will do, only practice makes perfect.

我喜欢英语口语课,每次当我上这门课的时候,我感到学得轻松和愉快。我可以没有压力地犯错误,因为我们都会犯错误,熟能生巧。

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值