三维场景重建:理论与实践 本章介绍了如何利用相机的校准参数,在世界坐标系中工作,从而在相机姿态和对应点的位置之间建立物理约束。通过使用本质矩阵(Essential matrix)和cv::recoverPose函数,我们可以恢复两个视图之间的相对姿态,并利用三角测量(triangulation)方法估计出对应点的三维位置。本章还详细说明了如何使用OpenCV函数实现这些步骤,并对三维重建的局限性和实际应用进行了探讨。
使用Haar级联与SVM进行图像识别 本篇博文深入探讨了如何使用Haar级联进行人脸检测以及使用支持向量机(SVM)和方向梯度直方图(HOG)进行物体和人的检测。文章首先介绍了如何加载和使用Haar级联进行人脸检测,然后详细解释了如何利用SVM和HOG特征来训练一个能够识别停车标志的分类器。通过这个过程,读者将了解到机器学习在计算机视觉中的应用,以及如何处理和分析高维数据。
视觉运动跟踪技术:原理与应用 本章节深入探讨了视觉运动跟踪技术,特别是特征点的检测与跟踪。内容涵盖了如何通过编程实现跟踪、检测新特征点的条件、基于特定标准拒绝跟踪点的策略,以及如何处理和显示跟踪点。章节还包括了使用OpenCV库进行特征点跟踪的实例,以及光流的基本原理和估计方法。
玩转图像:OpenCV图像处理与内存管理 本文介绍了在OpenCV中如何保存处理后的图像,并探讨了cv命名空间的使用、图像格式的选择以及如何读取不同类型的图像。深入理解了cv::Mat数据结构的内存管理特性,并通过实践演示了如何使用回调函数、绘制图像和文本,以及如何操作图像数据。
图像中投影关系的估计与3D场景重建 本篇博客探讨了图像中目标检测的算法和3D场景重建的关键步骤。通过分析detectTarget方法的三个步骤,我们了解了如何在图像中检测兴趣点、稳健匹配并确定目标位置。此外,本文还介绍了通过相机校准、恢复相机姿态以及从立体图像计算深度来重建3D场景的方法。博客内容结合了实际的OpenCV函数应用,旨在为读者提供从图像处理到三维重建的全面理解。
3D场景重建:从相机标定到姿态恢复 本文讲述了如何使用OpenCV进行相机标定和3D场景重建。首先介绍了相机内参已知时的标定方法,并通过使用圆形网格进行校准。然后,文章详细阐述了在已知3D结构的情况下,如何通过图像信息恢复相机姿态,包括使用cv::solvePnP函数进行刚体变换计算,并通过cv::viz模块可视化3D信息。此外,还介绍了如何利用不同视角间的图像对应关系,即使在没有3D场景信息的情况下,也能重建3D姿态和结构。
图像形态变换与流域分割技术深入解析 本文深入探讨了图像形态变换技术中的流域分割和最大稳定外部区域(MSER)算法,详细解释了如何通过标记图像和形态学操作来分割图像,以及如何检测图像中的有意义区域。文章通过实际代码示例和图像处理结果,展示了这些高级图像处理技术的实际应用。
深入图像处理:高斯滤波与图像下采样 本篇博客深入探讨了图像处理中的高斯滤波器原理及其应用。首先介绍了高斯滤波器的系数计算方法及其对图像模糊效果的影响。随后,详细阐述了如何应用二维高斯滤波器进行图像处理,包括了对OpenCV函数cv::GaussianBlur的使用说明。此外,博客还探讨了图像下采样的技巧,包括如何通过低通滤波避免混叠效应,以及使用OpenCV中的cv::pyrDown和cv::resize函数进行图像尺寸调整。最后,介绍了不同的像素插值方法,如最近邻插值、双线性插值和双三次插值,并讨论了它们在图像处理中的适用场景。
利用直方图和积分图提升图像处理效率 本章介绍了几种直方图比较方法,包括卡方度量、相关方法、Bhattacharyya度量和Kullback-Leibler散度。同时,详细探讨了积分图的原理和应用,它是一种高效的像素求和工具,特别适用于图像子区域内的像素计数。通过自适应阈值处理的示例,展示了积分图像如何用于高效计算局部阈值,从而优化图像处理效果。
OpenCV3编程实践:从入门到应用 本文是根据OpenCV3编程实践书籍内容总结而成的博客文章。文章首先介绍了OpenCV库的基础知识及其在计算机视觉领域的广泛应用。随后,文章详细探讨了如何使用OpenCV进行图像处理,包括图像的读取、像素操作、颜色处理、直方图分析、形态学转换、图像滤波、几何特征提取、兴趣点检测、特征点描述与匹配、射影关系估计以及3D场景重建等方面。此外,文章还涉及了视频序列处理、视觉运动跟踪和机器学习基础概念等内容。本文的目的是为初学者提供一个关于如何使用OpenCV进行计算机视觉应用开发的实用指南。
OpenCV图像处理:矩阵操作与ROI定义 本文将详细介绍OpenCV中图像矩阵的基本操作,包括如何声明不同类型的图像矩阵、初始化图像、分配和重新分配图像数据块。同时,我们将探讨cv::Mat对象的内存管理机制,包括引用计数和浅拷贝。此外,文章还将涉及如何在图像上定义感兴趣区域(ROI),并使用ROI进行图像操作。最后,我们将了解图像掩码的使用,它允许我们限制特定操作的应用区域。
图像分析中的关键点描述与匹配技术 本章节探讨了如何从图像的兴趣点提取描述符,以及如何使用这些描述符进行图像匹配。描述符通常是包含二进制、整数或浮点数的一维或二维向量,用于唯一地描述关键点及其邻域。描述符需要足够独特以区分不同的关键点,同时对光照变化和视角变化具有鲁棒性。图像匹配是通过比较图像中对应关键点周围的图像块来完成的,以识别出具有相似像素值的点。本章还介绍了使用OpenCV中的cv::matchTemplate函数进行模板匹配的基本方法,以及如何通过特征匹配策略来识别和显示图像间的相似之处。
图像直方图:像素计数、对比度增强与颜色调整 本章深入探讨了图像处理中直方图的应用,包括使用直方图来计算像素值的分布、利用查找表来修改图像的外观、通过直方图均衡提高图像对比度等技术。文章介绍了直方图的构建过程、如何通过减少直方图的箱子数量来优化内存使用,以及如何应用查找表来快速修改图像的像素值。此外,还展示了如何通过拉伸直方图来改善图像的对比度,以及如何使用查找表对彩色图像进行颜色减少。
深入理解霍夫变换:线条与圆圈检测技术 本文深入探讨了霍夫变换在计算机视觉中的应用,特别是如何通过霍夫变换检测图像中的线条和圆形。文中详细解释了霍夫变换的工作原理,包括累加器的使用,以及如何通过调整参数来优化检测结果。此外,还介绍了概率霍夫变换和广义霍夫变换,并通过实际案例展示了如何在OpenCV中实现这些技术。
图像轮廓提取与形状描述符计算 本章节介绍了如何在图像中提取轮廓、计算形状描述符,以及如何通过这些描述符来识别和分析对象。详细讨论了cv::findContours函数的应用,以及如何使用不同标志来获取轮廓的层次结构。接着,介绍了如何使用边界框、最小包围圆、多边形近似、凸包和矩等方法来描述和识别图像中的连通分量。
OpenCV安装与图像处理入门 本文将介绍如何安装OpenCV库以及如何在不同操作系统中配置开发环境。此外,文中还会简要说明OpenCV的模块结构,并通过一个简单的图像处理示例,演示如何加载、显示、处理和保存图像。
图像处理:颜色检测与分割技术解析 本文深入解析了OpenCV在图像处理中处理颜色的相关技术。涵盖了使用绝对差异、洪水填充函数以及GrabCut算法进行颜色检测和图像分割的方法。同时介绍了函数对象和OpenCV算法基类的概念,以及颜色表示转换的知识。
特征点匹配与描述技术的深度解析 本文深入探讨了在计算机视觉领域中用于图像匹配的特征点描述与匹配技术。通过对比不同策略如距离阈值法和使用二进制描述符的方法,文章展示了如何有效地筛选出更准确的匹配点对。此外,文中还介绍了ORB、BRISK和FREAK等描述符,并通过实验验证了它们在图像匹配中的应用和性能。
三维场景重建与相机校准的奥秘 本文深入探讨了利用OpenCV进行三维场景重建和相机校准的过程,涵盖了从检测棋盘角点到计算校准参数的完整步骤。文中详细解释了棋盘图像的角点如何被检测和绘制,以及如何通过这些点来确定相机的内在和外在参数。此外,还介绍了如何利用校准结果来矫正图像的畸变,并提供了关于相机校准的更多选项。