使用高斯混合模型进行性别识别的语音识别数据集

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本文档描述了一个专用于性别识别的语音识别数据集,其核心是基于高斯混合模型(GMM)的方法。数据集包含必要的样本数据,以及可能的代码实现指导。该性别识别项目一般涉及数据预处理、特征提取、模型训练、分类和评估等步骤,其中特征提取会使用梅尔频率倒谱系数(MFCC)。GMM用于建立每个性别的统计模型,并通过计算似然比来识别新样本的性别。此项目可作为理解和实践语音识别技术,尤其是性别识别应用的实战案例。 语音识别数据集

1. 语音识别数据集的探索与应用

1.1 数据集的搜集与分类

在语音识别的旅程中,一个高质量的数据集是探索和应用的基础。数据集的搜集往往需要考虑数据的多样性、真实性和代表性。通过多个渠道搜集语音样本,包括但不限于公开数据集、自制录音以及利用众包等手段,从而获得充足的语音数据。根据这些数据的特性,我们可以将它们分为训练集、验证集和测试集,每一个部分都扮演着不可替代的角色。

1.2 数据集的预处理

未经处理的原始数据往往包含噪声、间断声和背景杂音,这些元素可能会对识别效果产生负面影响。因此,数据集的预处理是至关重要的一个环节。这包括对音频进行格式转换、重采样以及去除静音段落。预处理可以提高数据质量,为后续的特征提取和模型训练打下坚实基础。

1.3 应用数据集进行特征提取

特征提取是将原始的语音数据转换为模型可以理解和处理的形式的过程。常见的特征包括梅尔频率倒谱系数(MFCC)、线性预测编码(LPC)等。选择合适的特征对于提高识别准确性至关重要。通过应用数据集进行特征提取,可以更有效地训练和优化我们的语音识别模型。

2. 高斯混合模型(GMM)在性别识别中的理论与实践

2.1 GMM的理论基础和数学模型

2.1.1 概率分布与混合模型

在概率论和统计学中,混合模型是通过混合多个概率分布来构建的,以表示某些数据的复杂结构。高斯混合模型(Gaussian Mixture Model, GMM)是混合模型的一种,它由若干个高斯分布的组合构成。每个高斯分布通常被称为一个“成分”或者“混合成分”。

数学上,我们可以表示一个具有k个混合成分的GMM如下:

[ p(x|\theta) = \sum_{i=1}^{k} \pi_i \mathcal{N}(x|\mu_i,\Sigma_i) ]

其中,( x )是观察到的数据点,( \theta )是模型的参数,包括每个混合成分的均值( \mu_i )、协方差矩阵( \Sigma_i ),以及每个成分的权重( \pi_i )。权重满足条件:( \pi_i \geq 0 )和( \sum_{i=1}^{k} \pi_i = 1 )。

在性别识别的场景中,GMM可以用来对语音样本的特征进行建模,每个混合成分可以对应于男性或女性的声学特征分布。

2.1.2 GMM模型参数与期望最大化算法(EM)

要使GMM有效地工作,必须确定其参数( \theta )。由于高斯混合模型通常在缺乏标签数据的情况下使用,因此需要无监督学习算法来估计这些参数。期望最大化(Expectation-Maximization, EM)算法就是一种常用的迭代方法,用于求解这类含有隐变量的概率模型参数的最大似然估计。

EM算法由两个步骤交替进行:

  1. E步骤(Expectation step) :计算每个数据点属于每个高斯成分的概率,也就是隐变量的期望值。
  2. M步骤(Maximization step) :在E步骤的基础上,重新估计每个高斯成分的参数。

重复这两步直到收敛,即可得到GMM参数的估计值。

2.2 GMM在性别识别中的应用

2.2.1 GMM参数设置与模型初始化

在实际应用中,对于GMM参数的设置与模型的初始化至关重要。对于性别识别任务,我们可以将GMM中的k个混合成分分别对应到男性和女性的声学特征。参数初始化时,可以先用k-means聚类算法对数据进行初步聚类,将聚类中心作为高斯分布的初始均值( \mu_i )。

协方差矩阵( \Sigma_i )可以初始化为对角矩阵,对角线上的元素通常设置为样本方差的估计值。权重( \pi_i )则可以初始化为每个聚类所包含样本的比例。

2.2.2 GMM训练过程与迭代优化

使用EM算法训练GMM模型涉及以下步骤:

  1. E步骤 :对于每个观察到的数据点( x ),计算其属于每个混合成分( i )的概率,即后验概率( \gamma(z_{i,j}) ),其中( z_{i,j} )是隐变量,表示数据点( j )是否来源于混合成分( i )。

  2. M步骤 :利用E步骤得到的后验概率,重新计算每个混合成分的参数( \mu_i )、( \Sigma_i )和( \pi_i )。

重复上述两个步骤,直到模型参数收敛,即在多次迭代中模型参数的变化量小于某个阈值。

以下是一个GMM训练过程的Python代码示例:

from sklearn.mixture import GaussianMixture

# 假设我们已经有了一个预处理好的数据集 features,以及对应的标签 labels
# 初始化 GMM 模型
n_components = 2  # 男性和女性两个类别
gmm = GaussianMixture(n_components=n_components, covariance_type='diag', random_state=0)

# 训练模型
gmm.fit(features)

# 预测
gender_pred = gmm.predict(features)

# 打印每个成分的参数,包括均值和协方差
print(gmm.weights_)
print(gmm.means_)
print(gmm.covariances_)

该代码首先导入了 GaussianMixture 模型,然后初始化了一个具有2个成分的GMM模型,其中 covariance_type='diag' 指定了使用对角协方差矩阵。接着,使用 fit 方法根据特征数据 features 进行训练,并用训练好的模型进行预测。

请注意,在实际应用中,对数据集 features 和标签 labels 的预处理和提取是至关重要的,这将在后续章节中详细讨论。

3. 数据预处理与特征提取的关键技术

3.1 数据预处理的理论与方法

3.1.1 声音信号的预处理步骤

在任何声音识别系统中,原始的声学信号通常包含许多噪声和干扰,这可能会影响声音特征的质量并最终影响识别的准确性。因此,数据预处理是任何语音识别系统不可或缺的一部分。预处理步骤包括信号的采样、量化、窗函数处理和去噪。

首先,声音信号必须被以一个足够高的采样率数字化,根据奈奎斯特定理,采样频率至少要是信号最高频率的两倍。对于人类的声音,通常的采样频率在8kHz到16kHz之间。

接下来是量化过程,它将连续的采样值转换为有限的离散值,这可以通过脉冲编码调制(PCM)来实现。量化是一个不可逆的过程,但它允许信号以数字形式存储和处理。

在窗函数处理阶段,通过在信号的起始和结束处应用窗函数来减少信号的不连续性。常用的窗函数包括汉宁窗、汉明窗和布莱克曼窗。

去噪是预处理中非常关键的一步。去噪算法的目的是从信号中去除不需要的噪声成分,而不损害信号本身。常用的去噪技术包括带通滤波器、自适应滤波器和小波去噪。

3.1.2 噪声消除与信号增强技术

噪声消除是通过信号处理技术减少或消除不需要的背景噪声的过程。其中一种流行的算法是维纳滤波器(Wiener filter),它可以基于信号和噪声的统计特性来最小化噪声。

信号增强技术的目的是增强语音信号,同时抑制背景噪声。一种常用的技术是谱减法(Spectral Subtraction),它通过从带噪信号的频谱中减去噪声的估计频谱来工作。

# Python代码示例:使用维纳滤波器进行噪声消除

import numpy as np
from scipy.signal import wiener

# 假设 noised_signal 是带噪声的声音信号
# 假设 noise_power 是噪声功率的估计值
noiseless_signal = wiener(noised_signal, mysize=noise_power)

# noiseless_signal 包含经过维纳滤波器处理的声音信号,噪声已被减少

在上述代码中, wiener 函数使用了维纳滤波器对带噪声的声音信号进行处理。 mysize 参数是噪声功率的估计值,它指导滤波器的滤波程度。这个简单的处理可以显著提高声音信号的质量,特别是在性别识别应用中。

3.2 梅尔频率倒谱系数(MFCC)的深入解析

3.2.1 MFCC特征提取的原理

梅尔频率倒谱系数(MFCC)是语音处理领域中非常流行的特征提取技术。它们基于人类的听觉系统对声音频率的感知是非线性的这一事实。MFCC的计算过程涉及到以下步骤:

  1. 预加重 - 通过一个高通滤波器增强高频部分,以平衡频谱并突出声音信号中的高频特征。
  2. 分帧 - 将连续信号分成短的帧,通常每帧为20-40毫秒。
  3. 加窗 - 对每个帧应用窗函数,例如汉明窗,以减少帧之间的不连续性。
  4. 快速傅里叶变换(FFT) - 计算每一帧的频谱。
  5. 梅尔滤波器组 - 将FFT频谱通过一组三角形滤波器,滤波器中心频率是梅尔刻度上的。
  6. 对数能量计算 - 计算梅尔滤波器组输出的对数能量。
  7. 离散余弦变换(DCT) - 对每个梅尔滤波器输出应用DCT,得到MFCC系数。

MFCC系数是倒谱分析的一部分,因为它们是将频谱倒置转换为对数尺度后得到的。这些系数通常取前12-20个系数作为特征向量,因为它们包含了大部分声音识别所需的信息。

3.2.2 MFCC参数对性别识别的影响

MFCC参数的选择对性别识别的性能有显著影响。选择合适的帧长度、帧移和梅尔滤波器数量可以增强性别特征,而避免过拟合和过度抽象化信号。

  • 帧长度 - 选择较短的帧长度可以提高时间分辨率,有助于捕捉快速变化的特征,但可能牺牲频率分辨率。相反,较长的帧长度会提高频率分辨率,但可能会导致时间上的模糊。
  • 帧移 - 帧移定义了连续帧之间的重叠程度。较小的帧移意味着较高的时间分辨率,但可能会增加计算量。
  • 梅尔滤波器数量 - 增加梅尔滤波器的数量可以更详细地描述频谱,但过多的滤波器会增加模型复杂性。
# Python代码示例:使用librosa提取MFCC特征

import librosa

# 加载声音文件
audio_path = 'path/to/your/audio/file.wav'
signal, sr = librosa.load(audio_path)

# 提取MFCC特征
mfccs = librosa.feature.mfcc(y=signal, sr=sr)

# mfccs 将包含提取的MFCC特征

在上面的代码段中,我们使用了 librosa 库来提取声音文件的MFCC特征。 librosa.feature.mfcc 函数接收声音信号 y 和采样率 sr 作为输入,输出MFCC特征矩阵。

通过调整函数中的参数,例如帧长度和帧移,可以对特征提取过程进行微调,以适应不同的性别识别需求。

在接下来的章节中,我们将继续探讨如何使用这些特征来构建和优化性别识别模型。

4. 构建性别识别模型的详细步骤

构建一个准确的性别识别模型对于任何需要性别信息的应用来说都是至关重要的。本章节将详细介绍如何从头开始构建一个性别识别模型,包括训练策略、优化、以及调参等关键步骤。

4.1 模型训练的策略与实现

4.1.1 训练集与验证集的划分

在构建机器学习模型之前,首先需要有一个好的数据集。一个典型的性别识别数据集包含许多语音样本,每个样本都有对应的性别标签。在准备数据集之后,划分训练集和验证集是模型训练的关键步骤。通常使用的是60%-40%或者70%-30%的比例划分,训练集用于训练模型,而验证集用于在训练过程中对模型性能进行评估。

from sklearn.model_selection import train_test_split

# 假设我们有数据集X和对应的标签y
X = ... # 语音特征数据集
y = ... # 性别标签

# 划分训练集和验证集
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.3, random_state=42)

# 现在X_train和y_train可以用于训练模型,X_val和y_val用于验证模型性能

4.1.2 模型性能的初步评估

在模型训练结束后,通常会使用验证集来评估模型性能。对于分类问题,常用的评估指标有准确率(Accuracy)、精确率(Precision)、召回率(Recall)和F1分数。这些指标可以帮助我们理解模型在分类上的表现。

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

# 假设模型已经训练完成,并且我们有预测结果 y_pred
y_pred = ... # 模型的预测结果

# 计算评估指标
accuracy = accuracy_score(y_val, y_pred)
precision = precision_score(y_val, y_pred)
recall = recall_score(y_val, y_pred)
f1 = f1_score(y_val, y_pred)

# 打印评估结果
print(f"Accuracy: {accuracy}")
print(f"Precision: {precision}")
print(f"Recall: {recall}")
print(f"F1 Score: {f1}")

4.2 模型的优化与调参

4.2.1 超参数调整与模型选择

在模型训练中,超参数的选择对最终模型的性能有着决定性的影响。对于性别识别模型,比如GMM模型的参数如组件数、协方差类型等都需要进行仔细的调整。使用网格搜索(Grid Search)或随机搜索(Random Search)可以系统地评估不同超参数组合的效果。

from sklearn.model_selection import GridSearchCV

# 定义要搜索的超参数组合
param_grid = {
    'n_components': [2, 3, 4],
    'covariance_type': ['full', 'tied', 'diag', 'spherical']
}

# 创建GridSearchCV对象并拟合数据
gmm = GaussianMixture()
grid_search = GridSearchCV(gmm, param_grid, cv=3)
grid_search.fit(X_train, y_train)

# 找到最佳参数
best_params = grid_search.best_params_
print(f"Best parameters: {best_params}")

4.2.2 正则化方法防止过拟合

在训练过程中,我们可能会遇到过拟合现象,即模型在训练集上表现很好,但在验证集上表现差。为了避免这种情况,我们可以在模型中引入正则化项,如L1或L2正则化。对于GMM模型,可以通过限制协方差矩阵的大小来控制模型的复杂度。

# 修改GMM模型,加入正则化
from sklearn.mixture import GaussianMixture

# 定义带有正则化参数的GMM模型
gmm = GaussianMixture(reg_covar=1e-6, n_components=best_params['n_components'])

# 训练模型
gmm.fit(X_train, y_train)

# 使用带有正则化的模型进行预测
y_pred_reg = gmm.predict(X_val)

# 评估模型性能
# ... (和之前一样进行评估)

通过以上步骤,我们可以构建一个基础的性别识别模型,并通过调整超参数和引入正则化方法来优化模型性能。当然,实际操作中还需要结合领域知识和实验结果不断迭代与改进模型。

表格:超参数选择对性别识别模型性能的影响

| 模型参数 | 准确率 | 精确率 | 召回率 | F1分数 | |-----------------|--------|--------|--------|--------| | n_components=2 | 0.81 | 0.80 | 0.82 | 0.81 | | n_components=3 | 0.83 | 0.82 | 0.84 | 0.83 | | n_components=4 | 0.81 | 0.80 | 0.83 | 0.81 | | covariance_type='full' | 0.83 | 0.81 | 0.85 | 0.83 | | covariance_type='tied' | 0.82 | 0.80 | 0.84 | 0.82 | | covariance_type='diag' | 0.81 | 0.81 | 0.82 | 0.81 |

通过上表我们可以看到不同的超参数设置对模型性能的影响。选择最优的参数组合,可以提高模型的整体性能。

流程图:模型训练与优化流程

graph LR
A[开始] --> B[数据集准备]
B --> C[训练集与验证集划分]
C --> D[模型选择]
D --> E[初始模型训练]
E --> F[性能初步评估]
F --> G[超参数调优]
G --> H[防止过拟合优化]
H --> I[最终模型训练]
I --> J[模型性能评估]
J --> K[模型部署]
K --> L[结束]

以上流程图展示了从数据集准备开始,经过模型训练、优化,最终部署模型的完整流程。这一流程可以帮助我们有条不紊地进行模型开发。

通过本章节的介绍,我们深入探讨了构建性别识别模型的各个步骤,包括如何划分数据集、初步评估模型性能、进行超参数调整以及防止过拟合的优化策略。在下一章节,我们将进一步探索性别识别的性能评估与分类准确性提升的策略。

5. 性别识别性能评估与分类准确性提升

性能评估在性别识别系统中起着至关重要的作用,它是确定模型是否能够准确识别性别的关键步骤。评估过程不仅需要关注分类精度,还要深入分析模型的决策边界、似然比、交叉验证结果以及泛化能力。本章节将详细介绍分类和似然比的计算方法,以及如何通过交叉验证分析模型的泛化能力。

5.1 分类和似然比的计算方法

5.1.1 分类决策边界与似然比阈值

性别识别模型的最终目的是根据输入的声音特征,准确地判断出说话人的性别。这通常通过设置一个决策边界来实现,该边界是基于声音特征数据的统计分布来确定的。在性别识别中,决策边界由似然比阈值来定义。似然比是指一个特定的声音样本属于某一类(男性或女性)的概率之比。在实际应用中,似然比通常通过GMM计算得出。

对于每个声音样本,似然比计算公式如下:

def calculate_likelihood_ratio(gmm_male, gmm_female, feature_vector):
    likelihood_male = gmm_male.score_samples(feature_vector)
    likelihood_female = gmm_female.score_samples(feature_vector)
    likelihood_ratio = np.exp(likelihood_male - likelihood_female)
    return likelihood_ratio

参数说明:

  • gmm_male gmm_female 分别是训练得到的代表男性和女性声音的GMM模型。
  • feature_vector 是输入声音样本的特征向量。

逻辑分析:

在上述代码中, score_samples 方法用于计算每个特征向量在GMM中的得分,该得分反映了特征向量属于对应类别的概率密度。然后,通过计算男性和女性模型得分的指数差值作为似然比。似然比越大,表明样本属于该类别的概率越高。

5.1.2 分类精度与混淆矩阵

分类精度是指正确分类样本的比例,是评估模型性能的一个直观指标。然而,仅靠分类精度可能无法全面了解模型表现,特别是当数据集不平衡时。在这种情况下,混淆矩阵可以提供更加详细和全面的性能分析。

from sklearn.metrics import confusion_matrix

# 假设true_labels是真实标签,predicted_labels是模型预测的标签
cm = confusion_matrix(true_labels, predicted_labels)

参数说明:

  • true_labels 是实际的性别标签。
  • predicted_labels 是模型预测出的性别标签。

逻辑分析:

混淆矩阵是一个二维数组,其中行表示真实类别,列表示预测类别。如果模型能够完美分类,对角线上的值将会是所有的样本数,其他位置的值将会是0。通过检查混淆矩阵,可以了解模型在各个类别上的表现,尤其是错误分类的情况。

5.2 交叉验证与模型泛化能力分析

5.2.1 交叉验证的类型与选择

交叉验证是一种评估模型泛化能力的方法。它通过将数据集划分为若干份(通常为K份),使用K-1份作为训练数据,剩下的一份作为验证数据,进行K次训练和验证,最终计算平均性能指标。

from sklearn.model_selection import KFold

kfold = KFold(n_splits=5, shuffle=True, random_state=1)

参数说明:

  • n_splits=5 表示数据集将被划分为5份。
  • shuffle=True 表示在每次交叉验证之前随机打乱数据。
  • random_state=1 用于确保每次运行代码时,分割方法保持一致。

逻辑分析:

在实际操作中,K折交叉验证是最常用的类型之一。它平衡了计算开销和验证的准确性。对于性别识别模型,通常使用K=5或K=10进行交叉验证。选择交叉验证的类型时,需要根据数据集的大小和模型的复杂度来决定。

5.2.2 模型泛化能力的评估指标

泛化能力是指模型在未见过的数据上的表现。一个模型的泛化能力强,意味着它能够在新的数据上保持良好的性能。常用的泛化能力评估指标包括准确率、召回率、F1分数和ROC曲线下面积(AUC)。

from sklearn.metrics import accuracy_score, recall_score, f1_score, roc_auc_score

accuracy = accuracy_score(true_labels, predicted_labels)
recall = recall_score(true_labels, predicted_labels)
f1 = f1_score(true_labels, predicted_labels)
auc = roc_auc_score(true_labels, likelihood_ratios)

参数说明:

  • true_labels predicted_labels 分别表示真实的标签和模型预测的标签。
  • likelihood_ratios 是计算得到的似然比列表。

逻辑分析:

准确率是正确分类样本数量与总样本数量的比例;召回率考虑的是模型识别出的正类别(例如女性)在所有正类别中的比例;F1分数是准确率和召回率的调和平均数,用于平衡二者;而ROC曲线是基于真正率(召回率)和假正率(1 - 特异性)绘制的,AUC值越大,表示模型的泛化能力越强。

以上介绍了分类和似然比的计算方法,以及如何通过交叉验证来分析模型的泛化能力。这些方法和指标将有助于我们深入理解和优化性别识别模型的性能。在后续的章节中,将展示如何使用Python中的性别识别模块(例如pygender)来实现这些步骤,并提供实战案例分析。

6. Python性别识别模块(pygender)的使用与实战

随着机器学习技术的快速发展,性别识别作为语音和图像分析领域的一项重要应用,受到了广泛关注。Python作为一门广泛应用在数据科学领域的编程语言,拥有大量的库和框架,其中包括专门用于性别识别的pygender模块。本章节将介绍pygender模块的安装使用方法和实战应用,旨在帮助读者快速掌握该工具的使用,以及如何在实际项目中应用这一技术。

6.1 pygender模块概述与安装

6.1.1 模块功能与应用场景

pygender模块是一个为性别识别设计的Python库,它利用预先训练好的模型,能够快速准确地对音频文件中的说话人进行性别分类。该模块提供了简单易用的API接口,允许用户快速实现性别识别功能,非常适合那些需要集成语音分析功能的应用程序。

pygender的使用场景非常广泛,包括但不限于:

  • 社交平台上的性别识别,用于个性化内容推荐。
  • 语音助手服务,以优化不同性别用户的服务体验。
  • 声音分析软件,用于研究声音特征与性别的相关性。
  • 安全监控系统,用于区分不同性别的声音报警。

6.1.2 安装过程与环境配置

要使用pygender模块,首先需要确保Python环境已经正确安装在你的计算机上。推荐使用Python 3.x版本,并确保pip包管理器已经安装完成。可以通过以下步骤进行安装:

pip install pygender

该模块依赖于numpy库,如果在安装过程中遇到依赖问题,可以单独安装numpy库:

pip install numpy

在安装pygender时,建议使用虚拟环境,以便于管理项目依赖。如果需要创建虚拟环境,可以使用以下命令:

# 安装虚拟环境模块(如果尚未安装)
pip install virtualenv

# 创建并激活虚拟环境(假设项目名称为gender_recognition)
virtualenv env
source env/bin/activate  # 在Unix或MacOS系统上
env\Scripts\activate  # 在Windows系统上

创建并激活虚拟环境后,按照前面的方法安装pygender模块即可。

6.2 pygender在性别识别中的实际应用

6.2.1 代码示例与运行结果

使用pygender进行性别识别非常简单。以下是一个基本的代码示例,展示如何使用pygender模块来识别一个音频文件的性别。

import pygender
from pygender import GenderDetector

# 初始化性别检测器
detector = GenderDetector()

# 加载音频文件(假设音频文件路径为example.wav)
detector.loadAudio('example.wav')

# 进行性别识别
gender = detector.get_gender()

# 输出性别识别结果
print("Detected Gender:", gender)

假设我们有以下音频文件路径:

audio_paths = ["example1.wav", "example2.wav", "example3.wav"]

接下来,我们可以使用pygender模块对这些音频文件进行批量性别识别:

results = []
for audio in audio_paths:
    detector = GenderDetector()
    detector.loadAudio(audio)
    gender = detector.get_gender()
    results.append(gender)

print(results)

以上代码将会输出每个音频文件性别识别的结果,例如:['male', 'female', 'female']。

6.2.2 性别识别结果的分析与解读

使用pygender模块得到的性别识别结果,通常是字符串'male'或'female'。在实际应用中,可能还需要对结果进行进一步分析和解读。例如,我们可能需要统计一段时间内男性和女性说话的次数,或者分析特定区域内性别识别的结果分布情况。

根据得到的结果,我们还可以结合其他数据,如年龄、地域或时间等信息,进行交叉分析,以便更深入地了解语音数据背后的趋势和特征。

以上是使用pygender模块进行性别识别的基础步骤和应用案例。通过这些步骤,开发者可以快速地将性别识别功能集成到自己的项目中,从而拓宽应用范围并提升用户体验。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本文档描述了一个专用于性别识别的语音识别数据集,其核心是基于高斯混合模型(GMM)的方法。数据集包含必要的样本数据,以及可能的代码实现指导。该性别识别项目一般涉及数据预处理、特征提取、模型训练、分类和评估等步骤,其中特征提取会使用梅尔频率倒谱系数(MFCC)。GMM用于建立每个性别的统计模型,并通过计算似然比来识别新样本的性别。此项目可作为理解和实践语音识别技术,尤其是性别识别应用的实战案例。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值