本发明涉及图像处理技术,尤其是涉及一种恢复图像遮挡边界的分层分割方法。
背景技术:
把一幅图像中的边界遮挡部分给分割出来是图像处理领域中的一个热点问题,对目标识别和场景分析的研究具有重要意义。
遮挡推理是计算机视觉中的一个根本问题。将3D场景投影到平面图像中的一个主要结果是遮挡——每个对象直接遮挡了后面对象的视图。为了理解场景,就必须检测和解释这些遮挡。每个对象都涉及一个或多个遮挡关系,这些遮挡使识别变得困难,但视觉系统可以用有效的遮挡推理来补偿。如果对象没有可靠地彼此遮挡,场景解释也会变得相当困难。
现有的从图像中恢复边界遮挡的分割方法是将单视图遮挡推理分为子任务分割和线标记来单独解决。这种基于观察的分割算法尝试根据颜色或纹理相似性对图像进行分割,依赖于二维感知分组线索,所以这种分割的边界可能是由于反射、光照或材料不连续和遮挡产生的区域,通常不对应于实际物体。这就使得不能充分恢复图像中物体间的边界遮挡关系。
技术实现要素:
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种恢复图像遮挡边界的分层分割方法。
本发明的目的可以通过以下技术方案来实现:
一种恢复图像遮挡边界的分层分割方法,包括以下步骤:
S1、通过分水岭分割来创建包括多个区域的初始分割图;
S2、利用多个图像特征,通过条件随机场模型推理图像的遮挡边界,得到软边界图,通过边界预测器对软边界图中的可能遮挡边界进行预测,用于下一次迭代;
S3、根据软边界图给图像边界分配置信度,计算边界的分层分割阈值;
S4、根据分层分割阈值去除弱的图像边界,得到迭代分割图;
S5、迭代步骤S

一种恢复图像遮挡边界的分层分割方法,通过分水岭分割创建初始分割图,结合条件随机场模型和多种图像特征,迭代优化边界预测,提高图像分割效果,尤其适用于计算机视觉中的遮挡推理问题。
最低0.47元/天 解锁文章
4万+

被折叠的 条评论
为什么被折叠?



