android字典数据结构,数据结构之字典树

数据结构字典树的学习:

Tire

Trie 树,也叫“字典树”,是一个树形结构。它是一种专门处理字符串匹配的数据结构,用来解决在一组字符串集合中快速查找某个字符串的问题。树的本质,就是利用字符串之间的公共前缀,将重复的前缀合并在一起。

fc1e22dd2d3b670cb9299f0f51f3da92.png

Trie 树的本质,就是利用字符串之间的公共前缀,将重复的前缀合并在一起。

1a7359043aad67ac83e6e65829691ec9.png

实现

将字符串集合构造成 Trie 树。这个过程分解开来的话,就是一个将字符串插入到 Trie 树的过程。另一个是在 Trie 树中查询一个字符串。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

import java.util.HashMap;

public class Trie_Tree{

private class Node{

private int dumpli_num;该字串的重复数目, 该属性统计重复次数的时候有用,取值为0、1、2、3

private int prefix_num;///以该字串为前缀的字串数, 应该包括该字串本身!!!!!

private Node childs[];此处用数组实现,当然也可以map或list实现以节省空间

private boolean isLeaf;///是否为单词节点

public Node(){

dumpli_num=0;

prefix_num=0;

isLeaf=false;

childs=new Node[26];

}

}

private Node root;///树根

public Trie_Tree(){

///初始化trie 树

root=new Node();

}

/**

* 插入字串,用循环代替迭代实现

* @param words

*/

public void insert(String words){

insert(this.root, words);

}

/**

* 插入字串,用循环代替迭代实现

* @param root

* @param words

*/

private void insert(Node root,String words){

words=words.toLowerCase();转化为小写

char[] chrs=words.toCharArray();

for(int i=0,length=chrs.length; imap

*/

public HashMapgetAllWords(){

return preTraversal(this.root, "");

}

/**

* 前序遍历。。。

* @param root子树根节点

* @param prefixs查询到该节点前所遍历过的前缀

* @return

*/

private HashMappreTraversal(Node root,String prefixs){

HashMapmap=new HashMap();

if(root!=null){

if(root.isLeaf==true){

当前即为一个单词

map.put(prefixs, root.dumpli_num);

}

for(int i=0,length=root.childs.length; igetWordsForPrefix(String prefix){

return getWordsForPrefix(this.root, prefix);

}

/**

* 得到以某字串为前缀的字串集,包括字串本身!

* @param root

* @param prefix

* @return 字串集以及出现次数

*/

private HashMapgetWordsForPrefix(Node root,String prefix){

HashMapmap=new HashMap();

char[] chrs=prefix.toLowerCase().toCharArray();

for(int i=0, length=chrs.length; i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

import java.util.HashMap;

public class Trie_Test {

public static void main(String args[]) //Just used for test

{

Trie_Tree trie = new Trie_Tree();

trie.insert("HELLO");

trie.insert("Hadoop");

trie.insert("Hadoop");

trie.insert("Spark");

trie.insert("Flink");

trie.insert("Hbase");

trie.insert("Hive");

trie.insert("Flume");

trie.insert("Kafka");

HashMapmap = trie.getAllWords();

for (String key : map.keySet()) {

System.out.println(key + " 出现: " + map.get(key) + "次");

}

map = trie.getWordsForPrefix("H");

System.out.println("\n\n包含H(包括本身)前缀的单词及出现次数:");

for (String key : map.keySet()) {

System.out.println(key + " 出现: " + map.get(key) + "次");

}

if (trie.isExist("Storm") == false) {

System.out.println("\n\n字典树中不存在:Storm ");

}

}

}

59042fadf3e787e9ab9fd7ac73b02b04.png

参考资料

https://blog.csdn.net/abcd_d_/article/details/40116485

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值