lesson 19 窗函数法的设计步骤
数字信号处理 陈鹏 3299340 窗函数法的设计步骤 Lesson 19 复习提问 FIR滤波器的缺点是? 窗函数法的设计思想是? 主瓣和旁瓣是指什么?它们对滤波器的影响分别是什么? 窗函数对主瓣和旁瓣的要求是什么? 窗函数法的设计步骤 窗函数法的设计步骤 窗函数法的缺点 窗函数法的缺点 窗函数法的缺点 窗函数法的缺点 举例 举例 举例 频率取样法设计FIR 复习提问 什么是频率取样?(p77) 频率取样后,信号产生什么变化?不失真的条件是什么? 如何恢复原频谱? 频率取样法设计FIR 频率取样法—设计步骤 频率取样法—设计步骤 求 的频率响应曲线验证所设计的FIR滤波器的频率响应,若不满足要求,适当增加过渡带上的取样值情况,重复上述设计直到满足要求位置。 详细过程见下面例子。 频率取样法—设计举例 频率取样法—设计举例 频率取样法—设计举例 频率取样法设计FIR 频率取样法设计FIR 频率取样法设计FIR 频率取样法设计FIR 频率取样法设计FIR FIR数字滤波器的设计方法 Design of FIR Digital Filters FIR与IIR滤波器的比较Comparison of FIR and IIR Digital Filters FIR与IIR滤波器的比较Comparison of FIR and IIR Digital Filters FIR与IIR滤波器的比较Comparison of FIR and IIR Digital Filters *五邑大学 信息学院 * 给出希望设计的滤波器的频率响应函数 根据允许的过渡带宽度及阻带衰减,初步选定窗函数和N值 计算以下积分,求出 或 将 与窗函数相乘得FIR数字滤波器的冲激响应 计算FIR数字滤波器的频率响应 或 并验证是否达到所要求的指标 在实际设计中,有许多具体问题要处理。 尽管窗函数法由于有明显的优点而受到重视,但是,以下两个原因使它的应用受到限制。 很难准确控制滤波器的通带边缘 若 不能用简单函数表示,则计算下面积分很困难 第一个问题要通过多次设计来解决。比如,要求设计FIR数字滤波器,在 处有 -3dB 的衰减,设计时先选择理想低通滤波器的 ,得到FIR数字滤波器在 处衰减为 -6dB,不符合要求,然后改选 进行设计,直到符合要求。 第二个问题的解决办法是用求和来代替积分,因为 若以 在 的 M 个点上的值之和代替上式积分,则有 上式表明 实际上等效于 序列的 M 点IDFT。 根据频率采样的知识,我们知道如下关系 因此,当 时, 在窗口范围内能很好的逼进 。 例 4.7 设计一个低通FIR数字滤波器。已知模拟理想低通滤波器的幅度响应为 取样频率 ,数字滤波器冲激响应的时延 解:将模拟理想低通滤波器的截止频率 转换成数字频率 因此,数字理想低通滤波器的频率特性可表示为 例 4.7 解(续):根据时延可确定窗函数的长度 数字理想低通滤波器的冲激响应为 由此得到要求设计的FIR数字滤波器的冲激响应为 相应的系统函数为 fc=125; fs=1000; alpha=10; N=2*alpha+1; wc=2*pi*fc/fs; n=0:alpha-1; hdn=sin(wc*(n-10))./(n-10)/pi; hdn=[hdn wc/pi fliplr(hdn)] win1=[ones(N,1)]'; win2=[bartlett(N)]'; win3=[hann(N)]'; win4=[hamming(N)]'; hn1=hdn.*win1; hn2=hdn.*win2; hn3=hdn.*win3; hn4=hdn.*win4; figure,freq