matlab 最小二乘 投影矩阵,线性代数导论(16)-投影矩阵和最小二乘(最新讲义)

本文介绍了线性代数中的投影矩阵及其应用,特别是在解决最小二乘问题上的作用。通过一个具体的例子展示了如何利用投影矩阵找到最接近给定点集的直线,并解释了误差向量与投影向量的关系。此外,讨论了当矩阵的列向量线性无关时,$A^TA$ 是可逆矩阵的情况。
摘要由CSDN通过智能技术生成

线性代数导论(16)-投影矩阵和最小二乘(最新讲义)

1. 投影矩阵

回顾上一讲的内容,只要知道矩阵A 的列空间,就能得到投影矩阵P 的导出式。

$P=A(A^TA)^{-1}A^T$,$Pb$将会把向量投影在$A$的列空间中。

2. 举两个极端的例子:如果b 在A 的列空间 $b\in C(A)$,则$Pb=b$;

如果b 与列空间正交 $b\bot C(A)$,则$Pb=0$。

一般情况下,$b$将会有一个垂直于$A$的分量,有一个在$A$列空间中的分量,投影的作用就是去掉垂直分量而保留列空间中的分量。

在第一个极端情况中,如果$b\in C(A)$则有$b=Ax$。带入投影矩阵$p=Pb=A(A^TA)^{-1}A^TAx=Ax$,得证。

在第二个极端情况中,如果$b\bot C(A)$则有$b\in N(A^T)$,即$A^Tb=0$。则$p=Pb=A(A^TA)^{-1}A^Tb=0$,得证。

向量$b$投影后,有$b=e+p, p=Pb, e=(I-P)b$,这里的$p$是$b$在$C(A)$中的分量,而$e$是$b$在$N(A^T)$中的分量。

3. 回到上一讲最后提到的例题:

我们需要找到距离图中三个点 $(1, 1), (2, 2), (3, 2)$ 偏差最小的直线:$y=C+Dt$。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值