图论算法c语言实现,c算法大全常用c语言算法,包括数论算法,图论算法、排序算法、高精度计算、树遍历算法等.doc...

一、数论算法

1.求两数的最大公约数

function ?gcd(a,b:integer):integer;begin ? if b=0 then gcd:=a? ? else gcd:=gcd (b,a mod b);end ;

2.求两数的最小公倍数

function ?lcm(a,b:integer):integer;begin? if a0 do inc(lcm,a);end;

3.素数的求法

A.小范围内判断一个数是否为质数:function prime (n: integer): Boolean;? var I: integer;? begin? ? for I:=2 to trunc(sqrt(n)) do? ? ? if n mod I=0 then begin ?prime:=false; exit;end;? ? prime:=true;? end;

B.判断longint范围内的数是否为素数(包含求50000以内的素数表):? procedure getprime;? ? var ? ? ? i,j:longint;? ? ? p:array[1..50000] of boolean;? ? ?begin? ? ? ?fillchar(p,sizeof(p),true);p[1]:=false;i:=2;while i<50000 do begin? if p[i] then begin? ? j:=i*2;? ? while j<50000 do begin? ? ? p[j]:=false;? ? ? inc(j,i);? ? end;? ?end;? ?inc(i);?end;?l:=0;?for i:=1 to 50000 do? ?if p[i] then begin? ? ?inc(l);pr[l]:=i;? end;end;{getprime}? ? ?function prime(x:longint):integer;? ? ?var i:integer;? ? ?begin? ? ? ?prime:=false;for i:=1 to l do? if pr[i]>=x then break? ? else if x mod pr[i]=0 then exit;prime:=true;? ? ?end;{prime}

二、图论算法

1.最小生成树

A.Prim算法:? ?procedure prim(v0:integer);? ? ?var? ? ? ?lowcost,closest:array[1..maxn] of integer;i,j,k,min:integer;? ? ?begin? ? ? ?for i:=1 to n do begin? lowcost[i]:=cost[v0,i];? closest[i]:=v0;?end;for i:=1 to n-1 do begin? {寻找离生成树最近的未加入顶点k}? min:=maxlongint;? for j:=1 to n do? ? if (lowcost[j]0) then begin? ? ? min:=lowcost[j];? ? ? k:=j;? ? end;? lowcost[k]:=0; {将顶点k加入生成树}? ? ?{生成树中增加一条新的边k到closest[k]}? {修正各点的lowcost和closest值}? for j:=1 to n do? ? if ?cost[k,j]

B.Kruskal算法:(贪心)

按权值递增顺序删去图中的边,若不形成回路则将此边加入最小生成树。function find(v:integer):integer; {返回顶点v所在的集合}var i:integer;begin? i:=1;? while (i<=n) and (not v in vset[i]) do inc(i);? if i<=n then find:=i else find:=0;end;

procedure kruskal;var? tot,i,j:integer;begin

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值