二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……
所以,设有一个二进制数:0110 0100,转换为10进制为:
下面是竖式:
0110 0100 换算成 十进制
第0位 0 * 20 = 0
第1位 0 * 21 = 0
第2位 1 * 22 = 4
第3位 0 * 23 = 0
第4位 0 * 24 = 0
第5位 1 * 25 = 32
第6位 1 * 26 = 64
第7位 0 * 27 = 0 +
---------------------------
100
用横式计算为:
0 * 20 + 0 * 21 + 1 * 22 + 1 *
23 + 0 * 24 + 1 * 25 + 1 *
26 + 0 * 27 = 100
0乘以多少都是0,所以我们也可以直接跳过值为0的位:
1 * 22 + 1 * 23 + 1 *
25 + 1 * 26 = 100
八进制数采用 0~7这八数来表达一个数。
八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方……
所以,设有一个八进制数:1507,转换为十进制为:
用竖式表示:
1507换算成十进制。
第0位 7 * 80 = 7
第1位 0 * 81 = 0
第2位 5 * 82 = 320
第3位 1 * 83 =
512 +
--------------------------
839
同样,我们也可以用横式直接计算:
7 * 80 + 0 * 81 + 5 * 82 + 1 *
83 = 839
结果是,八进制数 1507 转换成十进制数为 839
三、利用知识完成任务
⒈二进制与十进制的转换。
⑴二进制转换成十进制
把十进制数17转换二进制数。
2 17 1(最低位)
2 8 0
2 4 0
2 2 0
2 1 1(最高位)
⒉二进制转换成十进制
把二进制数11011转换成十进制。
(11011)2=1×24+1×23+0×22+1×21+1×20
=16+8+0+2+1
=27
⒋小结:我们刚才熟悉了计算机的二进制,也了解了二进制与十进制的转换,我们常用的计算器就是运用的二进制的原理进行一些常用的算术运算。
因为二进制有一个很突出的特点,它只有两个数,而我们的计算器要运算的话,就是通过电流的大小或者有电与无电的区别来进行的,电流的大小或者有电无电分别代表数字1和0,从而实现了我们常用的算术运算。
⒌八进制、十六进制与十进制的转换。
⑴十进制数转换成八进制数
8 247 7(最低位)
8 30 6
3 3(最高位)
⑵八进制数转换成十进制数
(367)8=3×82+6×81+7×80
=192+48+7
=(247)10
⑶十进制换成十六进制
16 578 2(最低位)
16 36 4
16 2 2(最高位)
⑷十六进制转换成十进制数
(242)16=2×162+4×161+2×160
=512+64+2
=578