数字是很奇妙的存在,它们不仅被用作计算,某些数字本身就隐藏着很多特别的属性。
如果一个数恰好等于它的真因子(又叫 " 真因数 ",即除了自身以外的约数 ) 之和,则称该数为完全数,又称完美数或完备数。比如,6 的约数为 1、2、3、6,其真因子即为 1、2、3,三者相加正好等于 6,所以说 6 就是一个完全数。
最早研究完全数的是公元前 6 世纪的毕达哥拉斯,他发现了 6 和 28 的数字特性——两者都是完全数,并且他认为 6 这一完全数象征着 " 完满的婚姻、健康和美丽 "。
除了完全数,根据自然数与其真因数之和的大小关系,还有盈数和亏数。以自然数 "4" 为例,它的真因数为 1、2, 两者相加等于 3,小于它本身,这样的自然数叫做亏数。再以自然数 "12" 为例,它的真因数为 1、2、3、4、6,相加之和等于 16,大于它本身,这样的自然数叫做盈数。通过研究其规律,人们发现一个完全数的倍数一定是盈数,一个完全数的因子一定是亏数。
完全数在自然数中的占比较低,因此吸引了无数人加入到寻找完全数的行列。通过借助计算机,人们逐渐发现了越来越多的完全数,最大的一个在 2013 年被发现,位数高达 4850340 位。
数字 6 是被数学家发现的第一个完全数,第二个至第四个被发现的完全数依次为 28、496、8128。这些数具有以下特点:
6=2 × 3=2 × ( 22-1 )
28=4 × 7=22 × ( 23-1 )
496=16 × 31=24 × ( 25-1 )
8128=64 × 127=26 × ( 27-1 )
由此出现了两个猜测:在 n 为质数时,所有 2n-1 ( 2n-1 ) 形式的数都是完全数吗?所有偶完全数都属于 2n-1 ( 2n-1 ) 这种形式吗?
这两个猜想得到了数学家的证实。最早研究了 2n-1 型的质数问题的是法国数学家梅森,因此这类数被称为梅森数,其中的质数 n 被称为梅森质数。梅森的研究表明,一个梅森质数对应一个偶完全数。目前通过计算机共发现了 30 多个梅森质数,但究竟还有多少,仍是一个未解之谜。对于是否存在奇完全数,目前尚未有结论,但数学家们已经证明:若奇完全数确实存在,这个数一定大于 1050。
完全数是自然数中非常具有趣味性的一系列数字,相信未来会通过更加精准、先进的方式计算出更多的完全数。
本文由中国人民大学附属中学第二分校一级教师秦薇进行科学性把关。
本作品为 " 科普中国 - 科学原理一点通 " 原创,转载时务请注明出处。