多叉树遍历 java_【LeetCode】429.N叉树的层序遍历(图文详解,三种方法,java实现)...

这篇博客详细介绍了如何使用Java实现N叉树的层序遍历,包括三种方法:基本的广度优先搜索、简化的广度优先搜索和递归方法。每种方法都附有代码实现和复杂度分析,旨在帮助读者理解并掌握N叉树的遍历技巧。
部署运行你感兴趣的模型镜像

题目

221308f1a08e915977bbac785cdb13dd.png

分析

方法一:利用队列实现广度优先搜索

我们要构造一个 sub-lists 列表,其中每个 sub-list 是树中一行的值。行应该按从上到下的顺序排列。

因为我们从根节点开始遍历树,然后向下搜索最接近根节点的节点,这是广度优先搜索。我们使用队列来进行广度优先搜索,队列具有先进先出的特性。

在这里使用栈是错误的选择,栈应用于深度优先搜索。

让我们在树上使用基于队列的遍历算法,看看它的作用。这是你应该记住的一个基本算法。

List values = new ArrayList<>();

Queue queue = new LinkedList<>();

queue.add(root);

while (!queue.isEmpty()) {

Node nextNode = queue.remove();

values.add(nextNode.val);

for (Node child : nextNode.children) {

queue.add(child);

}

}

用一个列表存放节点值,队列存放节点。首先将根节点放到队列中,当队列不为空时,则在队列取出一个节点,并将其子节点添加到队列中。

让我们看看这个算法遍历树时我们得到了什么结果。

a2c457fcf03288fe7cbe9614b5e9bb92.png

04ef204166f637bb357b2cfbc03deebf.png

eb9212f2131a478850676e7a9449d231.png

c34e4ceb9e1288094788225888b39220.png

4337f9c8f4fff7294c152857cda1b78d.png

282883daae33e571fe46e90954c135ff.png

168a71905ef520c3618b75939516faa2.png

3fc99af51c2cbd899c47fbbd7fe24b6f.png

15b829626fde2f672ca0e8e8910857b5.png

5df7c19e7d9087c5643fc37a86e0d6dc.png

51648ed72aae5d46cc7005d6e17b25fc.png

53e6ef49aaf3138f62ee87c8f7607450.png

b8b0667cabe08ee31d99fb188f452b2c.png

14d57e2acea5790a7e032c5c9c4b4fd3.png

a0cce49f3a1ecc31ab70759df1c997f4.png

485dc6947cc01fc45df2b39b5e65f7f4.png

20cfcc9ff4e0749115375f51bc49ba9c.png

cd987af9b380e463dbc14c30dc5822df.png

f09ae569940ab6b8d2226ab12f5570c4.png

84aa0b4070c1fbb8e7c229c3a2786707.png

c769f5c01b57444260a0ef8421496aea.png

1a5a9b685858d40c22a82e7c21516083.png

ebd31c14c311651318f391a74e336785.png

3727019073a7e9303e2ccdf358e2516a.png

cccc4b6dbf068bf7e7b0020672863846.png

7e0364be320062fb7ca75bde606013fa.png

5de7a628b241aef32bf652e6ff1ba6a3.png

027464ae1466d9c9e8879bd17e97d894.png

52b3656c35925ea63f23dd1dae9003bb.png

4a54ef02947a322737a507aafc749081.png

5d99c1d60907113acdc48bd9f75a2fed.png

我们可以看到它从左到右,并且从上到写顺序遍历节点。下一步,我们将研究如何如何在这个算法的基础上保存每一层的列表。

算法:

上面的基本算法在一定程度上帮助了我们解决这道题目,但是我们还需要保存每一层的列表,并且在根节点为空时正常工作。

再构造下一层的列表时,我们需要创建新的子列表,然后将该层的所有节点的值插入到列表中。一个很好的方法时在 while 循环体开始时记录队列的当前大小 size。然后用另一个循环来处理 size 数量的节点。这样可以保证 while 循环在每一次迭代处理一层。

使用队列十分重要,如果使用 Vector,List,Array 的话,我们删除元素需要 O(n)O(n) 的时间复杂度。而队列删除元素只需要 O(1)O(1) 的时间。

// This code is a modified version of the code posted by

// #zzzliu on the discussion forums.

class Solution {

public List> levelOrder(Node root) {

List> result = new ArrayList<>();

if (root == null) return result;

Queue queue = new LinkedList<>();

queue.add(root);

while (!queue.isEmpty()) {

List level = new ArrayList<>();

int size = queue.size();

for (int i = 0; i < size; i++) {

Node node = queue.poll();

level.add(node.val);

queue.addAll(node.children);

}

result.add(level);

}

return result;

}

}

复杂度分析

时间复杂度:O(n)。n 指的是节点的数量。

空间复杂度:O(n).

方法二:简化的广度优先搜索

算法:

// This code is a modified version of the code posted by

// #zzzliu on the discussion forums.

class Solution {

public List> levelOrder(Node root) {

List> result = new ArrayList<>();

if (root == null) return result;

List previousLayer = Arrays.asList(root);

while (!previousLayer.isEmpty()) {

List currentLayer = new ArrayList<>();

List previousVals = new ArrayList<>();

for (Node node : previousLayer) {

previousVals.add(node.val);

currentLayer.addAll(node.children);

}

result.add(previousVals);

previousLayer = currentLayer;

}

return result;

}

}

复杂度分析

时间复杂度:O(n)。n 指的是节点的数量。

空间复杂度:O(n),我们的列表包含所有节点。

方法三:递归

算法:

我们可以使用递归来解决这个问题,通常我们不能使用递归进行广度优先搜索。这是因为广度优先搜索基于队列,而递归运行时使用堆栈,适合深度优先搜索。但是在本题中,我们可以以不同的顺序添加到最终列表中,只要我们知道节点在哪一层并确保在那一层的列表顺序正确就可以了。

class Solution {

private List> result = new ArrayList<>();

public List> levelOrder(Node root) {

if (root != null) traverseNode(root, 0);

return result;

}

private void traverseNode(Node node, int level) {

if (result.size() <= level) {

result.add(new ArrayList<>());

}

result.get(level).add(node.val);

for (Node child : node.children) {

traverseNode(child, level + 1);

}

}

}

复杂度分析

时间复杂度:O(n)。n 指的是节点的数量

空间复杂度:正常情况O*(log*n),最坏情况 O(n)。运行时在堆栈上的空间。

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值