53 局部错误分析
假设你建立了一个复杂的机器学习流水线并想提高系统性能,对流水线的哪个部分进行操作呢?可以将找到错误所归属的流水线的某一部分,然后在该部分上调优。
例如我们的猫分类器:

第一部分是检测器,检测图中的猫,并裁剪下来,第二部分是分类器,输出是否是猫。你可能花数年时间去优化某一个部分,那么如何确定优化哪个部分呢?
实施错误分析,将导致错误的流程找出来,重点优化。举个模型出错误的例子:本来图片中有猫,算法却给出y=0,即没有猫。

我们手动检查算法的两个部分,检测和分类,假设检测给出如下结果:

可以看到检测器只检测到了石头,然后分类器给出了y=0,即不是猫,可见分类器给出了正确的分类,那么问题出在检测器了。
如果检测器给出下面的预测:

本文探讨了在机器学习流程中如何进行错误分析,通过局部错误分析确定需要优化的环节。介绍了如何将错误归因于流程的特定部分,如检测器或分类器,并提供了正式的错误归因方法。此外,还讨论了错误分析与人类水平对比的重要性,以及如何发现和处理流程设计的缺陷。
最低0.47元/天 解锁文章
379

被折叠的 条评论
为什么被折叠?



