冯诺依曼体系结构是计算机硬件层次的抽象,01-冯诺依曼体系结构计算机组成的金字塔sucl2015获取更多课程瑞客论坛.pdf...

本文介绍了计算机硬件的基本组成,包括主板上的插槽、I/O设备如显示器、鼠标、键盘和硬盘的作用。提到了南桥芯片在连接外部设备与CPU通信中的角色,以及显卡的重要性,特别是GPU在图形处理和计算任务中的功能。此外,还讨论了冯·诺依曼体系结构如何统一了不同设备的信息处理方式,以及智能手机硬件的集成化设计。
摘要由CSDN通过智能技术生成

计算机主板上通常有着各种各样的插槽,图片来源

有了三大件,只要配上电电源源供电,计算机差不多就可以跑起来了。但是现在还缺少各类输入(Input)/输出

(Output)设备,也就是我们常说的II//OO设设备备。如果你用的是自己的个人电脑,那显示器肯定必不可少,只

有有了显示器我们才能看到计算机输出的各种图像、文字,这也就是所谓的输输出出设设备备。

同样的,鼠标和键盘也都是必不可少的配件。这样我才能输入文本,写下这篇文章。它们也就是所谓的输输入入

设设备备。

最后,你自己配的个人计算机,还要配上一个硬盘。这样各种数据才能持久地保存下来。绝大部分人都会给

自己的机器装上一个机箱,配上风扇,解决灰尘和散热的问题。不过机箱和风扇,算不上是计算机的必备硬

件,我们拿个纸板或者外面放个电风扇,也一样能用。

说了这么多,其实你应该有感觉了,显示器、鼠标、键盘和硬盘这些东西并不是一台计算机必须的部分。你

想一想,我们其实只需要有I/O设备,能让我们从计算机里输入和输出信息,是不是就可以了?答案当然是

肯定的。

你肯定去过网吧吧?不知道你注意到没有,很多网吧的计算机就没有硬盘,而是直接通过局域网,读写远程

网络硬盘里面的数据。我们日常用的各类云服务器,只要让计算机能通过网络,SSH远程登陆访问就好了,

因此也没必要配显示器、鼠标、键盘这些东西。这样不仅能够节约成本,还更方便维护。

还有一个很特殊的设备,就是显显卡卡(Graphics d)。现在,使用图形界面操作系统的计算机,无论是

Windows、MacOS还是Linux,显卡都是必不可少的。有人可能要说了,我装机的时候没有买显卡,计算机

一样可以正常跑起来啊!那是因为,现在的主板都带了内置的显卡。如果你用计算机玩游戏,做图形渲染或

者跑深度学习应用,你多半就需要买一张单独的显卡,插在主板上。显卡之所以特殊,是因为显卡里有除了

CPU之外的另一个“处理器”,也就是GPGPUU (GraphicsProcessingUnit,图形处理器),GPU一样可以做各

种“计算”的工作。

获取一手更新 个人学习 请勿传播

南桥

鼠标、键盘以及硬盘,这些都是插在主板上的。作为外部I/O设备,它们是通过主板上的南桥

(SouthBridge)芯片组,来控制和CPU之间的通信的。“南桥”芯片的名字很直观,一方面,它在主板上

的位置,通常在主板的“南面”。另一方面,它的作用就是作为“桥”,来连接鼠标、键盘以及硬盘这些外

部设备和CPU之间的通信。

有了南桥,自然对应着也有“北桥”。是的,以前的主板上通常也有“北桥”芯片,用来作为“桥”,连接

CPU和内存、显卡之间的通信。不过,随着时间的变迁,现在的主板上的“北桥”芯片的工作,已经被移到

了CPU的内部,所以你在主板上,已经看不到北桥芯片了。

冯·诺依曼体系结构

冯·诺依曼体系结构

刚才我们讲了一台计算机的硬件组成,这说的是我们平时用的个人电脑或者服务器。那我们平时最常用的智

能手机的组成,也是这样吗?

我们手机里只有SD卡(SecureDigitalMemory d)这样类似硬盘功能的存储卡插槽,并没有内存插槽、

CPU插槽这些东西。没错,因为手机尺寸的原因,手机制造商们选择把CPU、内存、网络通信,乃至摄像头

SoC,也就是SystemonaChip(系统芯

芯片,都封装到一个芯片,然后再嵌入到手机主板上。这种方式叫SoC

片)。

这样看起来,个人电脑和智能手机的硬件组成方式不太一样。可是,我们写智能手机上的App,和写个人电

脑的客户端应用似乎没有什么差别,都是通过“高级语言”这样的编程语言撰写、编译之后,一样是把代码

和数据加载到内存里来执行。这是为什么呢?因为,无论是个人电脑、服务器、智能手机,还是Raspberry

Pi这样的微型卡片机,都遵循着同一个“计算机”的抽象概念。这是怎么样一个“计算机”呢?这其实就

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值