计算机技术属于全日制工程硕士吗,计算机技术领域全日制工程硕士专业学位研究生培养方案试行为.PDF...

计算机技术领域全日制工程硕士专业学位研究生培养方案试行为

计算机技术领域

全日制工程硕士专业学位研究生培养方案(试行)

(2009.09)

为保证全日制工程硕士研究生的培养质量,特制定此计算机技术领域全日制

工程硕士研究生培养方案。

一、培养目标

计算机技术领域全日制工程硕士专业学位是与工程领域任职资格相联系的

专业性学位,培养应用型、复合式高层次工程技术和工程管理人才。

具体要求为:

① 拥护党的基本路线和方针政策,热爱祖国,遵纪守法,具有良好的职业

道德和敬业精神,具有科学严谨和求真务实的学习态度和工作作风,身心健康。

② 掌握所从事领域的基础理论、先进技术方法和手段,在领域的某一方向具

有独立从事工程设计、工程实施,工程研究、工程开发、工程管理等能力。

③ 掌握一门外国语,可以熟练地阅读专业领域的外文资料。

二、学习方式及年限

采用全日制学习方式,实行弹性学制和学分制,学习年限一般为 3 年,最长

学习年限不得超过 4 年。

三、培养方式

① 采用课程学习、实践教学和学位论文相结合的培养方式。

② 课程设置应体现厚基础理论、重实际应用、博前沿知识,着重突出专业

实践类课程和工程实践类课程。

③ 实践教学是全日制工程硕士研究生培养中的重要环节,鼓励工程硕士研

究生到企业实习,可采用集中实践与分段实践相结合的方式。工程硕士研究生在

学期间,必须保证不少于半年的实践教学,应届本科毕业生的实践教学时间原则

上不少于 1 年。

④ 学位论文选题应来源于工程实际或具有明确的工程技术背景。

四、课程设置

课程设置原则:课程设置遵循先进性、灵活性、复合性、工程性和创新性五

个基本原则。

课程体系包括公共基础课程、专业基础课和专业课、选修课程等。

学分要求:总学分不少于 35 学分,其中课程学习要求不少于 30 学分,必修

环节 5 学分;必修课程除公共基础课外,原则上在专业基础课及专业课中选,总

共必修课程不低于 19 学分,如果专业方向有特殊要求的,必修课程可以在相应

一级学科工学硕士课程设置中的学科基础课、专业基础课和专业课中选;选修课

程至少 3 门 11 学分。

具体课程设置:

属性 课程名称 学时 学分 备注

自然辩证法 54 3 必修

科学社会主义 30 1 必修

学位英语 72 3 必修

公 专业英语 40 2 必修

共 随机过程 40 2

基 矩阵分析与应用 40 2

础 数值分析 40 2 必修

课 计算机数学 40 2 (五选一)

软件的数学背景 40 2

知识产权 20 1 必修

信息检索 20 1 必修

计算机体系结构 40 2

计算机算法设计与分析 40 2

现代密码学理论与应用 40 2

计算机安全技术与实践 40 2

专 计算机网络安全 40 2

业 多媒体计算机技术

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值