魂武者服务器维护了怎么办,《魂武者》12月28日停机更新公告

该楼层疑似违规已被系统折叠 隐藏此楼查看此楼

亲爱的魂武者:

为了优化游戏体验及修复相关BUG,我们计划2018年12月28日01:00-06:00对《魂武者》服务器进行一次停机更新,补丁预计35M左右。

【更新时间】2018年12月28日01:00-06:00

【更新范围】全部服务器

【更新奖励】钻石×188,金币×50000

【反馈渠道】如果您更新版本过程中或更新后出现异常或遇到任何BUG,请在本帖下方回复反馈

【下载地址】服务器更新完毕后,您打开魂武者客户端即可直接进行自动更新!若您无法进行自动更新,可以通过官网,下载最新的客户端!

【更新内容】

一、 新增内容

首部资料片《联盟争霸》来袭,新增内容如下:

1. 部分区服新增联盟据点战玩法,开启区服及时间说明如下:

1)目前仅在手Q安卓1区、手Q iOS2区开启该玩法,后续开启区服通知将通过公告、官网新闻等渠道进行通知

2)据点战玩法每3日开启1次,玩法开启当日需联盟长/副联盟长通过【联盟-战役大厅】入口报名参加,报名第二日21:00~21:30进行据点争夺战、第三日~下次据点结算可获得每日占领奖励

2. 解锁69级等级上限(之前获取的巅峰币总额会转换为存储经验,玩家完成每日任务可获得额外经验,直到存储经验用完)

3. 解锁故事模式20~23章

4. 解锁圣火大厦81~100层

5. 解锁记忆迷宫第五章“达摩”(60级)

6. 解锁试炼之门“困难”难度(65级)

7. 解锁联合追捕60级与65级关卡

8. 解锁英雄新的进化等级、装备升级等级和神器升级等级

二、 体验优化

1. 决斗场掉线保护由每日2次降低至1次,且未掉线方可获得全部积分

2. 设置中新增匹配震动开关, 可以关闭匹配成功时的震动效果

3. 大神榜中增加新英雄(达摩和蔷薇)

4. 蔷薇自动战斗AI优化

5. 联盟副本排名奖励徽章总数提升,所有参与过联盟副本的玩家均可得到徽章奖励

6. 新增斗技一键选择功能,一次最多选中50个低品质斗技作为强化材料(只看品质,不区分等级)

7. 优化斗技操作提示:强化材料中有紫色品质或者+9以上斗技时,需要进行2次确认

8. 装备商店的装备核心增加每日打折

三、 BUG修复

1. 修复S级野牛招募时,招募界面星级显示错误的问题

2. 修复联盟申请分配完道具后,对应申请未消失的问题

魂武者官方运营团队

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值