ga tsp matlab,遗传算法(GA)求解TSP问题MATLAB程序

该博客介绍了使用遗传算法解决30个城市旅行商问题(TSP)的实现过程,详细阐述了算法的交叉和变异操作,并展示了如何通过调整参数以优化结果。文章通过MATLAB代码实现并给出了最优解为423.7的基准问题,同时探讨了遗传算法中交叉率和变异率的影响。
摘要由CSDN通过智能技术生成

本程序求解常见的组合优化问题TSP问题,如果仅仅是用一个程序去求解一个优化问题,显然这样的工作意义并不大。主要是因为求解的好坏往往是很难评价的,另外尤其对于遗传算法来说,遗传算法交叉

变异方法不同,交叉率,变异率等参数选择的不同,对结果都有很大的影响。我们采用如下的一个30个城市的TSP问题benckmark问题,最优解为423.7,30个城市的坐标如下

41

94;37 84;54 67;25 62;7 64;2 99;68 58;71 44;54 62;83 69;64 60;18

54;22 60;83 46;91 38;25 38; 24 42;58 69;71

71;74 78;87 76;18 40;13 40;82 7;62 32;58 35;45 21;41 26;44 35;4

50

%以遗传算法求解30个城市的TSP问题

%程序主要变量表

%A(30,2) 存放30个城市的坐标  zhongqun(100,30)存放种群规模100的父代

%k 总的循环迭代次数  zhongqun1(200,30)存放父代和交叉之后的子代

%n1 n2 随机选择交叉的两个个体

%gene1 geng2 随机选择两点交叉的两个交叉位置

%zxh1 父代1的子回路  zxh_1

排序完成后子代1的子回路

%zxh2 父代2的子回路  zxh_2

排序完成后子代2的子回路

%bianyi(200,1) 变异参数 小于变异概率 该个体就发生变异

%bianyi1  bianyi2

变异时交换编码的位置

%bianyilv 小于变异概率的个体发生变异

%din(1,200)存放父代与子代的适值函数 由小到大

tic;%统计程序的运行时间

A=[41 94;37 84;54 67;25 62;7 64;2 99;68 58;71 44;54 62;83

69;64 60;18 54;22 60;83 46;91 38;25 38;

24 42;58 69;71 71;74

78;87 76;18 40;13 40;82 7;62 32;58 35;45 21;41 26;44 35;4 50];%输入数据

TSP问题中30个城市的坐标

chushi=rand(100,30);%生产初始矩阵 存放初始解

for i=1:1:100

zhongqun(i,1:1:30)=1:1:30;

end

for i=1:1:50%生产初始解 对0到1之间的随机数进行排序 来确定初始解

for k=1:1:30

for j=1:1:29

if(chushi(i,j)>chushi(i,j+1))%排序

temp=chushi(i,j);

chushi(i,j)=chushi(i,j+1);

chushi(i,j+1)=temp;

temp=zhongqun(i,j);

zhongqun(i,j)=zhongqun(i,j+1);

zhongqun(i,j+1)=temp;

end

end

end

end

for k1=1:1:300%迭代次数

%交叉开始 采用子巡回交换交叉方式

zhongqun1=zeros(200,30);% 存放父代和交叉之后的子代

zhongqun1(1:100,1:end)=zhongqun;%前100个存放父代

for k=1:2:99%交叉开始

gene1=ceil(30*rand(1));%两点交叉的第一个节点

gene2=ceil(gene1*rand(1));%两点交叉的第二个节点

n1=ceil(100*rand(1));%随机选择从父代中选择两个个体

n2=ceil(100*rand(1));%随机选择从父代中选择两个个体

zhongqun1(k+100,1:1:gene2)=zhongqun(n1,1:1:gene2);%交叉

zhongqun1(k+101,1:1:gene2)=zhongqun(n2,1:1:gene2);%交叉

zxh1=zhongqun(n1,(gene2+1):1:gene1);%存放父代1的子巡回

zxh_1=zeros(1,gene1-gene2);%存放子代1的子巡回

i1=1;

%以父代2的次序 对父代1的子巡回编码进行排序 得到子代1的子巡回

for i1=1:1:(gene1-gene2)

for i=1:1:30

if(zhongqun(n2,i)==zxh1(i1))

zxh_1(i1)=i;

end

end

end

for i1=1:1:(gene1-gene2)

for i=1:1:(gene1-gene2-1)

if(zxh_1(i)

temp=zxh_1(i);

zxh_1(i)=zxh_1(i+1);

zxh_1(i+1)=temp;

temp=zxh1(i);

zxh1(i)=zxh1(i+1);

zxh1(i+1)=temp;

end

end

end

zhongqun1(k+100,(gene2+1):1:gene1)=zxh1;

zxh2=zhongqun(n2,(gene2+1):1:gene1);%存放父代2的子巡回

zxh_2=zeros(1,gene1-gene2);%存放子代2的子巡回

i1=1;

%以父代1的次序 对父代2的子巡回编码进行排序 得到子代2的子巡回

for i1=1:1:(gene1-gene2)

for i=1:1:30

if(zhongqun(n1,i)==zxh2(i1))

zxh_2(i1)=i;

end

end

end

for i1=1:1:(gene1-gene2)

for i=1:1:(gene1-gene2-1)

if(zxh_2(i)

temp=zxh_2(i);

zxh_2(i)=zxh_2(i+1);

zxh_2(i+1)=temp;

temp=zxh2(i);

zxh2(i)=zxh2(i+1);

zxh2(i+1)=temp;

end

end

end

zhongqun1(k+101,(gene2+1):1:gene1)=zxh2;

zhongqun1(k+100,(gene1+1):1:30)=zhongqun(n1,(gene1+1):1:30);%交叉

zhongqun1(k+101,(gene1+1):1:30)=zhongqun(n2,(gene1+1):1:30);%交叉

end

%变异开始 采用交换变异方式

bianyi=rand(200,1);%生产变异参数 来判断是否变异

bianyi1=ceil(30*rand(1));%生成随机数 用来确定 变异的时候交换哪两个位置的编码

bianyi2=ceil(30*rand(1));%生成随机数

if(k1<50)

bianyilv=0.1;%自适应的修改变异概率当迭代初期选择大的变异概率

end

if((k1<=100)&&(k1>=50))

bianyilv=0.05;%自适应的修改变异概率

end

if(k1>100)

bianyilv=0.02;%自适应的修改变异概率 当迭代末期选择小的变异概率

end

for i=1:1:200

if(bianyi(i)

tempb=zhongqun1(i,bianyi1);%交换

zhongqun1(i,bianyi1)=zhongqun1(i,bianyi2);

zhongqun1(i,bianyi1)=tempb;

end

end

din=zeros(200,1);%存放父代和子代的适值函数

for i=1:1:200%计算适值函数

for j=1:1:29

din(i)=din(i)+sqrt((A(zhongqun1(i,j),1)-A(zhongqun1(i,j+1),1))^2+(A(zhongqun1(i,j),2)-A(zhongqun1(i,j+1),2))^2);%计算距离

end

din(i)=din(i)+sqrt((A(zhongqun1(i,1),1)-A(zhongqun1(i,30),1))^2+(A(zhongqun1(i,1),2)-A(zhongqun1(i,30),2))^2);%计算起点与终点距离

end

xuanze=1:1:200;

%对父代与子代的个体适值函数由小到大排序

for i=1:1:200

for j=1:1:199

if(din(j)>din(j+1))

tempx=din(j+1);

din(j+1)=din(j);

din(j)=tempx;

tempx1=xuanze(j+1);

xuanze(j+1)=xuanze(j);

xuanze(j)=tempx1;

end

end

end

%保持种群规模不变 只选择其中适值函数较小的100个 做为下一次迭代的父代

for i=1:1:100

zhongqun(i,1:end)=zhongqun1(xuanze(i),1:end);

end

%画图程序

plot(k1,din(1),'*'),hold on

,xlabel('迭代次数'),ylabel('计算结果'),title('种群数=50')

end

fprintf('计算结果=%f\n',din(1));

toc;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值