高教c语言程序设计,高教c语言程序设计(2011版)课后编程题答案

本文提供了几个使用C语言实现的基础编程实例,包括时间换算、两数除法及余数计算、平均值计算与数值交换等操作,有助于初学者理解和掌握C语言的基本语法。

第三章 顺序结构

3.30 编写程序,把560分钟换算成用小时和分钟表示,然后进行输出。

※程序如下※

main( )

{

int hour,minute;

hour=560/60;

minute=560%60;

printf("hour=%d,minute=%d",hour,minute);

}

3.31 编写程序,输入两个整数:1500和350,求出它们的商数和余数并进行输出。

※程序如下※

#include

main( )

{

int num1,num2,i,j; /* 定义变量 i-商,j-余数 */

printf("input num1 and num2:\n");

scanf("%d%d",&num1,&num2);

i=n

}

3.32 编写程序,读入三个双精度数,求它们的平均值并保留此平均值小数点后一位数,

对小数点后第二位数进行四舍五入,最后输出结果。

※程序如下※

main( )

{

double a,b,c,average=0;

printf("input a,b,c(double):\n");

scanf("%lf%lf%lf",&a,&b,&c);

average=(a+b+c)/3;

average=average*10;

average=average+0.5;

average=(int)average;

average=average/10;

printf("average=%lf",average);

}

3.33 编写程序,读入三个整数给a,b,c,然后交换它们中的数,把a中原来的值给b, 把b中原来的值给c,把c中的值给a。

※程序如下※

main( )

{

内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值