数字信号处理试卷及答案6套,有助于考研辅以用
第3页共37页
15.下列传输函数中,B)输出稳定最慢
A H(z)=
(x-0.25)(2-0.82)
BH(3)=
(x-0.25)(-0.92)
0.1)(z-0.52)
H(z)
(z-0.25)(x-062
16.对于滤波器的描述,下列哪种说法是正确的(C)
A差分方程和传输函数是时域描述
B频率响应和脉冲响应是频域描述
C差分方程和脉冲响应是时域描述
D脉冲响应和传输函数是频域描述
17对于IR及FR滤波器的描述,下列说法正确的是(A)
AFIR滤波器必定是稳定的
BIR滤波器必定是稳定的
C如果希望滤波器具有线形相位,应选择IR滤波器.
D双线形变换把S平面的虚轴线性地映射到Z平面的单位圆上
18.采样频率为∫=2500Hx,当要求DFT的频率分辨率达到IHz时,DFT的长度
N至少应该为多少点?(B)
A.1000
B.2500
C.5000
D.7500
19.设计一个高通线性相位FIR滤波器,要求h(n)(0≤n
A.h(n)偶对称,N为偶数
B.h(n)偶对称N为奇数
Ch(n)奇对称,N为偶数
D.h(n)奇对称N为奇数
20.一个采样频率为∫的N点序列,其N点DFT结果X(1)对应的频率为(A)
A. fS/N
B 2fS/N
第4页共37页
C. fs/2N
D. fs/3N
简答题(每题5分,共10分)
1、对正弦信号进行采样得到的正弦序列仍然是周期序列吗?请简要说明理
由。
答:不一定
只有当2为有理数时,正弦序列才是周期的,否则为非周期。
2、比较IR和FR滤波器在性能和结构上各有什么优缺点
答:FR可实现线性相位并保证系统的稳定性;
IR在满足同样滤波器性能情况下,所需的阶次(系数)要少得多
3、采用双线性法和脉冲响应不变法设计IR滤波器,如果原型模拟滤波器具有
线性相位,哪一种方法设计出来的数字滤波器不能保持线性相位,为什么?
答:采用双线性法设计的IR滤波器不能保持线性相位,由于预扭曲方程是一个非
线性的变换,所以导致设计出来的滤波器是非线性的
4.周期性数字信号的频谱应该用什么计算,可否用DTFT计算,请说明原因
答:周期性数字信号的频谱应采用离散傅立叶级数计算.不能用DTFT计算,由于
周期信号是同一段序列在整个时域不断重复DTHT的无限和将导致结果为无限
5.说明离散傅立叶变换(DFT)与离散时间傅立叶变换(DTFT)及z变换(ZT)
之间的关系。
答:DTFT是单位圆上的z变换,DFT是对DTFT在单位圆上一周之内的N等分
抽样。
6.窗函数法设计FIR滤波器对窗函数的两项要求是什么?它们能同时满足
答:①要求降低窗主瓣的宽度,以降低过渡带的宽度;②要求降低旁瓣的髙度,
以减小频谱泄漏(3分)。不能同时满足(2分)。
7.简要说明抗混叠滤波器和抗镜像滤波器的形状及其在信号处理中的作用。
答:二者均为低通滤波器。抗混叠滤波器的作用是滤除被采样信号的高焮分量,
以满足采样定理要求;(3分)
抗镜像滤波器的作用是滤除零阶保持信号阶稊状的镜像频谱,从而使信号得以平
第5页共37页
滑。(2分)
8.简要说明系统零、极点对滤波器形状的影响。
答:滤波器幅度谱会在零点处对应一个极小值,而在极点处出现一个极大值。
计算题(每题10分,共40分)
1.模拟信号x(t)=3sinl00t每25毫秒采样一次。写出描述数字信号
x(n)=Asin(n92)的函数。假设无量化误差。
解:模拟信号周频率:f=2π=1002兀Hz;(2分)
采样频率:fs=1/s=1/(25x103)=40Hz;(2分)
则采样序列的数字频率:Ω2=2πf/fs=100/40=2.5rads;(3分)
所以数字信号可表示为:x[n=3sin(ng)=3sin(25n).(3分)
2、滤波器有单位增益,零点位于z=0.5,极点位于z=-0.9和z=0.1。
(1)求滤波器的传输函数。
(2)哪个极点对脉冲响应影响最大?
解:(1)传输函数为:
z-0.5
-0.5
I()(x+0.9)(x-0.1)x2-0.8-0.09
5分)
(2)由于z=09这一极点更靠近单位园,所以它对脉冲响应影响最大。
5分)
3、对于下列差分方程,画出转置直接Ⅱ型流图。
v(n)-2y(n-1)+0.5y(n-2)=x(n)-0.5x(n-1)
y
delay
第6页共37页
(10分)
4.滤波器的脉冲响应为h(n)=(1+n)(u(n)-u(n-4),输入为
x(n)=l(mn)-l(n-6),求滤波器的输出,并指出受边界效应影响的采样点
解:(a)滤波器输出如下图所示,其余的响应值均为O。(6分)
lk
h-k]432
y[0]=I
h[l-k
4
y[1l=3
h[2-k]
4
3
y[2]=6
3-k]
4
=10
h[4k]
4
y[4]=10
第7页共37页
h[5-k
y5]=10
h[6-k]
4
y[6]=9
h[7-k
y7=7
h[8-k]
4
2
y[8]=4
b)受边界效应影响的点如图中?标示。(4分)
5.对于传输函数H(x)
(1-0.5z-)(1-0.9x)
(a)求脉冲响应
(b)求阶跃响应
解:H(x)
3
(z-0.5)(2-0.9)(7-0.5(2-0.9)
(a)脉冲响应是传输函数的逆Z变换
3
5
H(z)=z2
57
十
(z-0.3)(z-0.9)(z-0.3z-0.9
z-0.3x-0.9
则脉冲响应为hm=-5(0.3)un+1+5(0.9)um+1
(b)阶跃函数的z变换是z/(z-1),则系统的阶跃响应为
Y(z)=H(Z)X(Z)=Z
(z-0.3)(x-0.9)x-1
7.14
5042.85
(z-0.3)(z-0.9)(z-1)(z-0.3z-09
7.14x-5042857
-0.32-0.9z-1
则阶跃响应为s[n]=7.14(0.1)un+2]-5009)+un+2]+4285un+2]
6.数字滤波器有零点z=0,极点z=-0.8和z=-0.5±j0.6,单位增益。
(1)画出滤波器的极一零点图。
(2)求出滤波器的传输函数。
解:
极点图
第8页共37页
0.5
(5分)
1.5
15-10500.51152
传输函数
Z
H(z)=
(z+0.8(z+05)2+(062)(z+0.82+z+061
Z
(5分)
z3+1.8z2+1.41z+0.488
四、滤波器设计(每题15分,共30分)
附
表FIR滤波器参数
滤波器
窗函数
通带边缘增益
项数阻带衰
类
N-1
减
20log
(1-6,)(dB)
型
(dB)
矩
形
0.91
21
0.9
T W
汉
0.5+050
3.32
4
0.06
T W
窗
哈
2rn
明
0.54+0.46c0s()
3.44
f
55
0.02
rW
窗
N
第9页共37页
布
莱
2丌n
4兀n
克0.42+0.5c0()+008c0s()598
75
0.0014
曼
TW
窗
l、设计FR滤波器满足下列指标:高通、采样频率20kHz、带边缘在9kH、过
渡带宽度900Hz、阻带衰减40dB。求出滤波器的脉冲响应表达式。
解:该高通滤波器对应的低通滤波器的通带边缘频率为:1kHz,
设计中所用的通带边缘频率为:1000+90/2=1450Hz,
相应的数字频率为:Ω21=2兀1450/200000.145rads,
对应的理想低通滤波器的脉冲相应表达式为:
h1(n)
sin(nQ2) sin(0. 145nT
(5分)
nT
根据阻带衰减要求,可选汉宁窗,窗函数长度
N=3.32=320=73.8-73
TW
2兀n
窗函数表达式:W(n)=0.5+0.5cos
72
(5分)
即所要求的带通滤波器的脉冲响应表达式为:
h(n)=h(n-36)w(n)(-1)
(5分)
2、求一阶低通数字巴特沃斯滤波器的差分方程,滤波器的截止频率为500Hz,
采样频率为4kHz。采用双线性变换法。
解:一阶低通模拟巴特沃斯滤波器的传输函数为:
H(S)
s+a
截止频率对应的数字频率为:
Q2n1=2=27-00.25z弧度
4000
预扭曲为:
第10页共37页
2f,tan-=3337弧度/秒(4分
将该值代入一阶低通模拟巴特沃斯滤波器的传输函数为:
3313.7
H(3)
S+On1S+33137
3分)
进行双线性变换:S=800(37-1)/(z+1)
得数字传输函数:
3313.7+3313.7x0293+0293z
H(z
11313.7-46863z
1-0.414x
(4分)
由此得差分方程:
y(n)=0.414y(n-1)+0.293x(m)+0.293x(-1)(4分)
试卷2
、单项选择题(每小题2分,共20分)
1.用Ikz的采样频率对下列信号进行采样不会发生混叠现象的是(A)
A频率为300Hz的信号
B频率为600Hz的信号
C频率为1kHz的信号
D频率为1.3kHz的信号
2若一线性移不变系统当输入为x(n)=8(n)时输出为yn)=R3(n),则当输入为
u(n)-u(-2)时输出为(C)。
A、R2(n
B、R2(n)
C、R3n)+R3(n-1)
D、R2(n)+R2(n-1)
3.对1024ⅹ512的图像用5x5低通滤波器进行滤波,支掉受边界效应影响的像素
点滤波后的图像大小为(B)