leetcode求最大矩形面积Java,LeetCode 84. 柱状图中最大的矩形

博客介绍了如何利用单调栈解决LeetCode中的第84题,即找到柱状图中能构成的最大矩形面积。文章详细解析了两种解题思路:暴力双层遍历和单调栈方法,并提供了对应的Java代码实现。单调栈方法通过维护一个始终保持单调递增的栈,减少了时间复杂度,提高了算法效率。
摘要由CSDN通过智能技术生成

LeetCode 84. 柱状图中最大的矩形

题目

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。

d0190ca2baf8cb28fb8502ff05c58f07.png

以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]。

f8dc542a29c17386764f00d34d88f8fb.png

图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10 个单位。

示例:

输入: [2,1,5,6,2,3]

输出: 10

解题思路

思路1-直接双层遍历,暴力解题

步骤:

外层循环每次选定i作为中心;

内层循环每次以i作为中心向两侧扩展,扩展的高不能低于i;

计算可扩展的最大面积,计算所有i扩展面积中的最大值;

效率:

时间复杂度:O(n²)

空间复杂度O(1)

思路2-使用单调栈

步骤:

新建栈,从左向右遍历入栈,入栈的条件是,当前即将入栈的柱子高度必须不低于当前栈顶的柱子高度,即柱子是单调递增的;

若当前柱子低于栈顶的柱子高度,说明之前的柱子高度不能再扩展了,需要从栈顶依次弹出并计算以每个栈元素为高时的矩形面积,直到栈顶柱子高度不高于当前柱子高度;

在2中计算到当前栈顶柱子高度不高于当前即将入栈的柱子高度时,当前柱子入栈;

上面的步骤有一个缺陷:若所有的柱子都是递增的,则矩形的面积就不曾计算过,所以还需要再加一个第4步;

在1新建栈时就压入一个垫底的数-1,在完成123步骤后,再以2的逻辑处理栈中的所有元素直到栈中只剩-1;

图解:

1fcfc5097b8d2b58390293b88ace195e.png

总结:单调栈也是算法中一个很有用的特性,需要多熟悉学习应用

算法源码示例

package leetcode;

import java.util.Stack;

/**

* @author ZhouJie

* @date 2020年4月4日 下午12:51:29

* @Description: 84. 柱状图中最大的矩形

*

*/

public class LeetCode_0084 {

}

class Solution_0084 {

/**

* @author: ZhouJie

* @date: 2020年4月4日 下午1:17:32

* @param: @param heights

* @param: @return

* @return: int

* @Description: 1-一次遍历,遍历中左右扩展,实际算法复杂度为O(n²)

*

*/

public int largestRectangleArea_1(int[] heights) {

int len = 0;

if (heights == null || (len = heights.length) == 0) {

return 0;

}

int maxArea = 0;

for (int i = 0; i < len; i++) {

if (heights[i] != 0) {

int l = i, r = i, h = heights[i];

while (l > 0 && heights[l - 1] >= h) {

l--;

}

while (r < len - 1 && heights[r + 1] >= h) {

r++;

}

maxArea = Math.max(maxArea, h * (r - l + 1));

}

}

return maxArea;

}

/**

* @author: ZhouJie

* @date: 2020年4月4日 下午1:43:01

* @param: @param heights

* @param: @return

* @return: int

* @Description: 2-单调栈

*

*/

public int largestRectangleArea_2(int[] heights) {

int len = 0;

if (heights == null || (len = heights.length) == 0) {

return 0;

}

Stack stack = new Stack();

stack.push(-1);

int maxArea = 0;

for (int i = 0; i < len; i++) {

while (stack.peek() != -1 && heights[stack.peek()] > heights[i]) {

maxArea = Math.max(maxArea, heights[stack.pop()] * (i - stack.peek() - 1));

}

stack.push(i);

}

while (stack.peek() != -1) {

maxArea = Math.max(maxArea, heights[stack.pop()] * (len - stack.peek() - 1));

}

return maxArea;

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值