说明:可能要用到的相关数据,,,,,,,,,。
得分
一、选择题(本大题共5小题,每小题2分,共10分. 在每个小题给出的四个选项中,只有一项符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均不得分)
1.某工人生产了三个零件,表示“他生产的第个零件是正品”(),则以下事件的表示式错误的是( )。
A. 表示“没有一个零件是次品”
B. 表示“至少有一个零件是次品”
C. 表示“仅有一个零件是次品”
D. 表示“至少有两个零件是次品”
2.设与分别为随机变量与的分布函数,为使是某一随机变量的分布函数,在下列给定的各组数值中应取( ).
A. B. C. D.
3.设随机变量X服从二项分布,即,则有( )。
A. B.
C. D.
4.设是来自正态总体的一个简单随机样本,记,则( )。
= 1 \* GB3 A. = 2 \* GB3 B. = 3 \* GB3 C. = 4 \* GB3 D.
5.设正态总体与,其中,均为未知参数,而与分别为总体相互独立的样本,记,,,,则的置信区间为,其置信水平为( )。
A. 0.90 B. 0.95 C. 0.975 D. 0.05
得分二、填空题(本大题共5小题,每小题2分,共10分,请在每小题的横线上填上正确答案。错填、不填均无分.)
得分
1.已知事件与独立,且,,则 。
1
2
1
0.1
0.2
3
0.3
0.4
2.设随机变量的联合分布律为:
其分布函数为,则 。
3.设与是随机变量,且,,,则 。
4.设是来自正态总体的一个简单随机样本,记,,则 。
5.已知来自容量为的正态总体的一个样本,其样本均值,样本标准差,则总体均值的置信水平为0.95的置信区间是 。
得分三、解答题(本大题共5小题,每小题9分,共45分,解答应写出推理,演算步骤)
得分
1.已知8只产品中有2只次品,6只正品,在其中取两次,每次任取一只,作不放回抽样,求 (1) 2只都是次品的概率; (2) 一只是正品,一只是次品的概率。
2.设随机变量的概率密度为;,试求(1)常数;(2) 。
3.设随机变量的概率密度为:,求的概率密度。
4.设总体服从参数为的泊松分布,即,其中,试求参数的极大似然估计。
5.水泥厂用自动包装机包装水泥, 每袋额定重量是50kg, 某日开工后随机抽查9袋, 称得其重量,算得平均重量为kg,样本标准差kg. 设每袋重量服从正态分布,问包装机工作是否正常?
得分四、综合题(本大题共3小题,每小题10分,共30分.解答应写出推理,演算步骤)
得分
1.假设在某个时期内影响股票价格变化的因素只有银行利率的变化。经分析,该时期内利率不会上调,利率下调的概率为0.6,利率不变的概率为0.4. 根据经验,在利率下调时,某只股票上涨的概率为0.8,在利率不变时,这支股票上涨的概率为0.4,试求这支股票上涨的概率.
Y
X
1
2
3
1
2
2.设随机变量的分布律为:
试问取何值时,与相互独立?
3.某车间有同型号车床200台, 在生产期间由于需要检修、调换刀具、变换位置及调换工序等常需停工。假设每台车床的开工率为0.6,开、关是相互独立的,且在开工时需电力15千瓦,问应供应多少千瓦电力就能以99.9%的概率保证该车间不会因供电不足而影响生产?
得分
五、证明题(本题满分5分.写出必要的推理步骤)
设随机向量服从单位圆上的均匀分布,验证:与不相关,并且与也不独立。
春季学期
货币银行学课程作业
要求:
1. 鼓励独立完成作业,严惩抄袭。
2. 主观题鼓励独立思考,不要求和教材完全对应。抓住重点即可,不鼓励死记硬背!
3、某些作业题(尤其是模型或者理论题)要特别注重关键的图形和公式,若没有必要的图形和公式,将被扣分。
4、题目的要点,需要展开说明,若没有展开说明,将被扣分。
第2章
中国人民银行将货币划分为哪几个层次?
答:共分为三个层次:M0-流通中的现金,M1-M0+银行的活动存款,M2-M1+银行定期存款。根据货币的流动性的原则,以存款及其信用工具转换为现金所需时间和成本作为标准,对货币划分的层次。中央银行为了便于进行宏观经济运行监测和货币政策操作,按照不同的统计口径确定不同的货币供应量。尽管世界各国中央银行都有自己的货币统计口径,但是,无论存在何等差异,其划分的基本依据却是一致