点在椭圆内matlab代码,matlab将椭圆拟合到给定的点集

Fitting an ellipse to a given set of points

The most accurate and robust fit minimizes geometric (orthogonal) distances from the observed points to the fitting curve. Our goal is to minimize the sum of squares of orthogonal distances. The Levenberg-Marquardt algorithm requires the computation of the distances and their derivatives with respect to the ellipse parameters. So this method is generated by using implicit differentiation for computing

Jacobian matrix.

Usage: [ParG,RSS,iters] = fit_ellipseLMG(XY,ParGini,LambdaIni)

Child functions:

Residuals_ellipse(from previous submission) , JmatrixLMG (included in the main function)

Input:

XY:given pointsi=1 to n

ParGini = [Center(1:2), Axes(1:2),Angle]'

LambdaIni: the initial value of the control parameter Lambda

Output:

ParG: parameter vector of the ellipse found

RSS: the Residual Sum of Squares (the sum of squares of the distances)

iters:# of iterations

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值